7

8

9.4 RIVERSIDE EAST

9.4.1 Background and Summary of Impacts

9.4.1.1 General Information

9 The proposed Riverside East SEZ is the largest of the proposed SEZs in the six-state 10 study area, with a total area of 202,896 acres (821 km²). The SEZ spans a distance of about 45 mi (72 km) between the points farthest west and east, but it has an irregular shape with a large 11 12 excluded central area (see Figure 9.4.1.1-1). The eastern boundary of the site is about 6 mi 13 (10 km) west of the Arizona border. The western boundary abuts and surrounds a portion of 14 Joshua Tree National Park. The nearest towns with populations greater than 10,000 are Blythe, located about 6 mi (10 km) southeast of the SEZ with a 2008 population of 21,727; and Indio, 15 16 located about 45 mi (72 km) west of the SEZ on I-10, with a 2008 population of 84,443. The 17 small town of Desert Center (2000 population of 150) is located at the far southwestern edge of 18 the SEZ, along I-10.

19

20 The SEZ is located in Riverside County in southeastern California. In 2008, the county 21 population was 84,443. The closest large cities are Moreno Valley, San Bernardino, and 22 Riverside (all located slightly more than 100 mi [161 km] west of the SEZ on I-10. The Interstate 23 runs east-west along the southern boundary of the SEZ. Other paved roads that cross parts of the Riverside East SEZ include State Route 177, which runs north-south through the western section 24 25 of the SEZ, and Midland Road, which crosses the northeastern portion of the SEZ. U.S. 95 runs 26 north-south about 3 mi (5 km) from the eastern boundary of the SEZ and through the town of 27 Blythe.

28

The nearest operating railroad is the Arizona and California (ARZC) Railroad, which passes through Rice, about 18 mi (29 km) north of the large eastern section of the proposed Riverside East SEZ. The ARZC is a regional short line; the rail stop at Vidal is about a 41 mi (66 km) drive from the SEZ via U.S. 95. Eight small airports open to the public are within a driving distance of approximately 72 mi (116 km) of the SEZ.

- An existing 500-kV transmission line runs east–west along I-10 and parallel to the southern SEZ boundary. It is assumed that the existing 500-kV transmission line could potentially provide access from the SEZ to the transmission grid (see Section 9.4.1.2). In addition, a 230-kV line passes through the far western section of the SEZ, and a 69-kV line passes through the eastern portion of the SEZ, along with other transmission lines (see Section 9.4.2).
- 41

As of February 2010, a total of 15 solar project applications were pending in the SEZ. The combined areas of these applications cover about 132,000 acres (534 km²), about 65% of the SEZ area (see Figure 9.4.1.1-1). Of these active pending applications within the SEZ, three are fast-track applications for parabolic trough facilities and one is a fast-track application for a PV facility. The combined capacity for these four facilities, when built, would be about 2,300 MW.

2 FIGURE 9.4.1.1-1 Proposed Riverside East SEZ

1

1 The proposed Riverside East SEZ and other relevant information are shown in 2 Figure 9.4.1.1-1. The criteria used to identify the SEZ as an appropriate location for solar 3 development included proximity to existing transmission lines or designated corridors, proximity 4 to existing roads, a slope of generally less than 2%, and an area of more than 2,500 acres 5 (10 km²). In addition, the area was identified as being free of other types of conflicts, such as 6 USFWS-designated critical habitat for threatened and endangered species, ACECs, SRMAs, and 7 NLCS lands (see Section 2.2.2.2 for the complete list of exclusions). Although these classes of 8 restricted lands were excluded from the proposed Riverside East SEZ, other restrictions might be 9 appropriate. The analyses in the following sections address the affected environment and 10 potential impacts associated with utility-scale solar energy development in the proposed SEZ for important environmental, cultural, and socioeconomic resources. 11 12 13 As initially announced in the Federal Register on June 30, 2009, the proposed Riverside

As initially announced in the *Federal Register* on June 30, 2009, the proposed Riverside East SEZ encompassed 202,295 acres (819 km²). Subsequent to the study area scoping period, the Riverside East boundaries were altered somewhat to facilitate the BLM's administration of the SEZ area. Borders with irregularly shaped boundaries were adjusted to match the section boundaries of the PLSS (BLM and USFS 2010). Some small higher slope areas at the borders of the site were also added to the SEZ, but these higher slope areas would not likely be utilized for solar facilities. The revised SEZ is approximately 600 acres (2.4 km²) larger than the original SEZ as published in June 2009.

21

22 23 24

33

9.4.1.2 Development Assumptions for the Impact Analysis

25 Maximum development of the proposed Riverside East SEZ was assumed to be 80% of the total SEZ area over a period of 20 years, a maximum of 162,317 acres (657 km²). These 26 27 values are shown in Table 9.4.1.2-1, along with other development assumptions. Full 28 development of the Riverside East SEZ would allow development of facilities with an estimated 29 total of 18,035 MW of electrical power capacity if power tower, dish engine, or PV technologies 30 were used, assuming 9 acres/MW (0.04 km²/MW) of land required, and an estimated 31 32,463 MW of power if solar trough technologies were used, assuming 5 acres/MW 32 $(0.02 \text{ km}^2/\text{MW})$ of land required.

34 Availability of transmission from SEZs to load centers will be an important consideration 35 for future development in SEZs. The nearest existing transmission line is a 500-kV line that runs 36 through the SEZ. It is possible that this existing line could be used to provide access from the 37 SEZ to the transmission grid, but the 500-kV capacity of that line would be inadequate for 38 18,035 to 32,463 MW of new capacity (note that a 500-kV line can accommodate approximately 39 the load of one 700 MW facility). At full build-out capacity, it is clear that substantial new 40 transmission and/or upgrades of existing transmission lines would be required to bring electricity from the proposed Riverside East SEZ to load centers; however, at this time the location and size 41 42 of such new transmission facilities are unknown. Generic impacts of transmission and associated 43 infrastructure construction and of line upgrades for various resources are discussed in Chapter 5. 44 Project-specific analyses would need to identify the specific impacts of new transmission 45 construction and line upgrades for any projects proposed within the SEZ.

TABLE 9.4.1.2-1	Proposed Riverside East 1	Development Acreages,	Maximum Solar Megawatt
Output, Access Ro	oads, and Transmission Li	ine ROWs	

Total Acreage and Assumed Developed Acreage (80% of Total)	Assumed Maximum SEZ Output for Various Solar Technologies	Distance to Nearest State, U.S. or Interstate Highway	Distance and Capacity of Nearest Existing Transmission Line	Assumed Area of Transmission Line ROW and Road ROW	Distance to Nearest Designated Transmission Corridor ^d
202,896 acres and 162,317 acres ^a	18,035 MW ^b 32,463 MW ^c	Adjacent (I-10)	Adjacent to SEZ, and 500 kV	0 acres and 0 acres	Adjacent to SEZ ^e

а To convert acres to km^2 , multiply by 0.004047.

b Maximum power output if the SEZ were fully developed using power tower, dish engine, or PV technologies, assuming 9 acres/MW (0.04 km²/MW) of land required.

с Maximum power output if the SEZ were fully developed using solar trough technologies, assuming 5 acres/MW (0.02 km²/MW) of land required.

d BLM-designated corridors are developed for federal land use planning purposes only and are not applicable to state-owned or privately owned land.

e A Section 368 federally designated 2-mi (3-km) wide energy corridor runs adjacent to the south boundary of the SEZ.

For the purposes of analysis in this PEIS, it was assumed that the existing 500-kV

transmission line that runs east-west along I-10 and parallel to the southern SEZ boundary could 5 provide access to the transmission grid, and thus no additional acreage disturbance for 6 transmission line access was assessed. In addition, a 230-kV line passes through the far western 7 section of the SEZ, and a 69-kV line passes through the eastern portion of the SEZ. Access to the 8 existing transmission lines was assumed, without additional information on whether these lines 9 would be available for connection of future solar facilities. If a connecting transmission line were 10 constructed in the future to a different off-site grid location from the one assumed here, 11 site developers would need to determine the impacts from construction and operation of that line. 12 Additionally, developers would need to determine the impacts of line upgrades if they are needed.

13

14

15 Existing road access to the proposed Riverside East SEZ should be adequate to support construction and operation of solar facilities, because I-10 passes along the southern edge of the 16 17 SEZ and there are several exits from I-10 as it passes by and through the SEZ. Because of the 18 site access provided by I-10, no additional road construction outside of the SEZ is assumed to be 19 required to support solar development of the SEZ.

- 20
- 21
- 22

9.4.1.3 Summary of Major Impacts and SEZ-Specific Design Features

In this section, the impacts and SEZ-specific design features assessed in Sections 9.4.2
through 9.4.21 for the proposed Riverside East SEZ are summarized in tabular form.
Table 9.4.1.3-1 is comprehensive list of the impacts identified in these sections; the reader may
reference the applicable sections for detailed support of the impact assessment. Section 9.4.22
discusses potential cumulative impacts from solar energy development in the proposed SEZ.

9 Only those design features specific to the proposed Riverside East SEZ are included in 10 Sections 9.4.2 through 9.4.21 and in the summary table. The detailed programmatic design 11 features for each resource area to be required under BLM's proposed Solar Energy Program are 12 presented in Appendix A, Section A.2.2. These programmatic design features would also be 13 required for development in this and the other SEZs.

14

1

15

TABLE 9.4.1.3-1 Summary of Impacts of Solar Energy Development within the Proposed Riverside East SEZ and SEZ-Specific Design Features^a

Resource Area	Environmental Impacts—Proposed Riverside East SEZ	SEZ-Specific Design Features
Lands and Realty	Full development of the SEZ for utility-scale solar energy production (80% of the total area) could disturb up to 162,317 acres (657 km ²) and would establish a very large and continuous industrial area along the 45-mi (72-km) stretch of I-10 that would exclude many existing and potential uses of the land, perhaps in perpetuity. Since much of the SEZ is undeveloped and rural, utility-scale solar energy development would introduce a new and discordant land use to the area.	None.
	Solar development along the I-10 corridor, State Route 177, and Midland Road would be highly visible to the public traveling these routes. In addition, solar development in the western portion of the SEZ along State Route 177 and County Road 2 would likely create conflict with existing residential use near Desert Center, Lake Tamarisk Resort, and scattered private residences, including those associated with agricultural development.	None.
	It is possible that the 11,640 acres (47 km ²) of private and state lands located within the external boundary of the SEZ eventually would be developed in the same or a complementary manner as the public lands.	None.
	15,683 acres (63 km ²) of the Section 368 energy corridor overlaps with the proposed SEZ. Two other BLM corridors oriented principally north and south designated in the CDCA Plan also overlap the SEZ. Because of technical constraints, solar development could not occur within a transmission ROW. Thus it appears that either the transmission corridors would have to be modified/reduced or solar development would have to be precluded within the transmission corridor.	None.

Resource Area	Environmental Impacts—Proposed Riverside East SEZ	SEZ-Specific Design Features
Specially Designated Areas and Lands with Wilderness Characteristics	SEZ development would adversely affect wilderness characteristics in the Palen-McCoy, Rice Valley, Big Maria Mountains, Chuckwalla Mountains, and Little Chuckwalla Mountains WAs and in Joshua Tree NP.	Application of SEZ-specific design features for visual resource impacts may reduce the visual impact on wilderness characteristics
	Solar facility development could adversely affect the scenic view from Joshua Tree National Park, the natural soundscape, and the quality of the night sky environment as viewed from the NP and wilderness areas in the region.	None.
	There is potential for adverse impacts on resources within the seven ACECs in and near the SEZ.	Once construction of solar energy facilities begins, the BLM would monitor resource conditions in the seven ACECs to determine whether additional design features would be required to protect the resources in these areas.
Rangeland Resources: Livestock Grazing	None.	None.
Rangeland Resources: Wild Horses and Burros	None.	None.
Recreation	Recreational users would lose the use of any portions of the SEZ developed for solar energy production, but the amount of recreation that is lost is expected to be small. Roads and trails through areas developed for solar power production could be closed or rerouted, although existing county roads would continue to provide general access where they exist.	None.
	The Midland LTVA is located within the SEZ, and solar development could occur very close to the LTVA. The impact of solar energy development on the use of the LTVA by winter visitors is not known, but it is likely the combination of increased traffic and development could discourage some of this use.	A buffer between the Midland LTVA and solar development should be established to preserve the LTVA area. The size of the buffer should be determined based on the site- and visitor-specific criteria.

Resource Area	Environmental Impacts—Proposed Riverside East SEZ	SEZ-Specific Design Features
Recreation (Cont.)	A large-scale change in the overall character of the SEZ would accompany intensive solar development and would discourage recreational use in areas adjacent to the SEZ, including designated wilderness, undesignated lands, and Joshua Tree NP. The potential loss of recreation use is not known.	None.
Military and Civilian Aviation	The development of any solar energy or transmission facilities that encroach into the airspace of MTRs could conflict with military training activities and could create a safety concern.	None.
	Two public airports are located within or in near proximity of the SEZ and could be affected by solar energy development.	Coordination with the FAA and local airport authorities should be required early in the project planning process to identify and mitigate potential impacts on the local airports.
		Precautions should be taken for pilots to avoid interference with flight paths or related flight operations, and to avoid reflector glare hazards and thermal plumes.
Geologic Setting and Soil Resources	Impacts on soil resources would occur as a result of ground-disturbing activities (e.g., grading, excavating, and drilling) during the construction phase. Impacts include soil compaction, soil horizon mixing, soil erosion and deposition by wind, soil erosion by water and surface runoff, sedimentation, and soil contamination. These may be impacting factors for other resources (e.g., air quality, water quality, and vegetation). Palen and Ford Dry Lakes may not be suitable locations for construction.	None.
Minerals (fluids, solids, and geothermal resources)	None.	None.

Resource Area	Environmental Impacts—Proposed Riverside East SEZ	SEZ-Specific Design Features
Water Resources	Ground-disturbance activities (affecting 4% of the total area in the peak construction year) could affect surface water quality due to surface runoff, sediment erosion, and contaminant spills.	Wet-cooling options would not be feasible; other technologies should incorporate water conservation measures.
	Construction activities may require up to $6,813$ ac-ft (8.4 million m ³) of water during peak construction year.	Land disturbance activities should avoid impacts to the extent possible near the regions surrounding Palen Lake, Ford Dry Lake, and McCoy Wash.
	Construction activities could generate up to 222 ac-ft (273,800 m ³) of sanitary wastewater.	During site characterization, hydrologic investigations would need to identify 100-year floodplains and potential jurisdictional water bodies
	Assuming full development of the SEZ, normal operations would use the following amounts of water:	subject to Clean Water Act Section 404 permitting. Siting of solar facilities and construction activities should avoid areas identified as within a 100-year
	• For parabolic trough facilities (32,463-MW capacity), 23,180 to 49 150 ac-ft/yr (28 6 million to 60 6 million m ³ /yr) for dry-	floodplain.
	cooled systems (wet cooling not feasible with respect to water requirements);	During site characterization, coordination and permitting with CDFG regarding California's Lake
	• For power tower facilities (18,035-MW capacity), 12,827 to 27,255 ac-ft/yr (15.8 million to 33.6 million m ³ /yr) for dry-cooled systems (wet cooling not feasible with respect to water	and Streambed Alteration Program would be required for any proposed alterations to surface water features (both perennial and ephemeral).
	requirements);	Groundwater withdrawals should comply with rules
	 For dish engine facilities (18,035-MW capacity), 9,220 ac-ft/yr (11.4 million m³/yr). 	and regulations set forth by the PVID for the portions of the SEZ located within PVID boundaries.
	 For PV facilities (18,035-MW capacity), 922 ac-ft/yr (1.1 million m³/ yr). 	The use of groundwater in the Chuckwalla Valley and Palo Verde Mesa should be planned for and monitored in cooperation with the BOR and the
	Assuming full development of the SEZ, normal operations would generate up to 455 ac-ft/yr (561,200 m ³ /yr) of sanitary wastewater and up to 9,222 ac-ft (11.4 million m ³ /yr) of blowdown water.	USGS in reference to the Colorado River Accounting Surface and the rules set forth in the Law of the River.
	`	

Resource Area	Environmental Impacts—Proposed Riverside East SEZ	SEZ-Specific Design Features
Water Resources (Cont.)	High TDS values of groundwater could produce water that is non-potable and corrosive to infrastructure.	Groundwater monitoring and production wells should be constructed in accordance with standards set forth by the State of California and Riverside County.
		Stormwater management plans and BMPs should comply with standards developed by the California Stormwater Quality Association.
		Water for potable uses would have to meet or be treated to meet water quality standards of the California Safe Drinking Water Act.
Vegetation ^b	 Up to 80% (162,317 acres [657 km²]) of the SEZ would be cleared of vegetation. Re-establishment of desert scrub or other communities in temporarily disturbed areas would likely be very difficult because of the arid conditions and might require extended periods of time. Noxious weeds could become established in disturbed areas and colonize adjacent undisturbed habitats, thus reducing restoration success and potentially resulting in widespread habitat degradation. The deposition of fugitive dust from disturbed soil areas in habitats outside a solar project area could result in reduced productivity or changes in plant community composition. 	An Integrated Vegetation Management Plan, addressing invasive species control, and an Ecological Resources Mitigation and Monitoring Plan, addressing habitat restoration and management, should be approved and implemented to increase the potential for successful restoration of creosotebush- white bursage desert scrub communities and other affected habitats and minimize the potential for the spread of tamarisk, Sahara mustard, cheatgrass, or other invasive species. Invasive species control should focus on biological and mechanical methods where possible to reduce the use of herbicides.
	Approximately 3,807 acres (15.4 km ²) of wetland habitat occurs within the SEZ and could be adversely affected by project development. Groundwater withdrawals could reduce groundwater discharge along riparian areas, and such reductions at springs and seeps that support riparian habitats could result in degradation of these habitats.	All wetland, riparian, playa, dry wash (including dry wash microphyll woodland), sand dune and sand transport areas, and chenopod scrub habitats within the SEZ should be avoided to the extent practicable, and any impacts minimized and mitigated. A buffer area should be maintained around wetland, riparian, playa, and dry wash communities to reduce the potential for impacts on these communities on or near the SEZ.

Resource Area	Environmental Impacts—Proposed Riverside East SEZ	SEZ-Specific Design Features
Vegetation ^b (Cont.)		Appropriate engineering controls should be used to minimize impacts on wetland, riparian, playa, dry wash woodland, and chenopod scrub, including downstream occurrences, resulting from surface- water runoff, erosion, sedimentation, altered hydrology, accidental spills, or fugitive dust deposition to these habitats. Appropriate buffers and engineering controls would be determined through agency consultation. Groundwater withdrawals should be limited to reduce the potential for indirect impacts on riparian habitat associated with groundwater discharge or
		mesquite bosque or bush seep-weed communities.
Wildlife: Amphibians and Reptiles ^b	The red-spotted toad and Couch's spadefoot are the main amphibian species expected to occur within the Riverside East SEZ. Several other amphibian species could inhabit the Colorado River Aqueduct west of the SEZ. These species, which include the bullfrog, Colorado River toad, Rio Grande leopard frog, and Woodhouse's toad, would not be expected to occur within the SEZ. Thirty-one reptile species (the desert tortoise, which is a federally and state-listed species, 13 lizards, and 17 snakes) could occur within the SEZ. Direct impacts on these species from SEZ development would be moderate (3.5 to 5.9% of potentially suitable habitats identified for the species in the SEZ region would be lost). With implementation of programmatic design features, indirect impacts would be expected to be negligible.	To the extent practicable, avoid ephemeral drainages, Palen Lake and Ford Dry Lake, and wetlands. The potential for indirect impacts on several amphibian species could be reduced by maximizing the distance between solar energy development and the Colorado River Aqueduct.

Resource Area	Environmental Impacts—Proposed Riverside East SEZ	SEZ-Specific Design Features
Wildlife: Birds ^b	More than 100 species of birds have a range that encompasses the Riverside East SEZ region. However, habitats for about 40 of these species either do not occur on or are limited within the SEZ (e.g., habitat for waterfowl and wading birds).	Pre-disturbance surveys should be conducted within the SEZ for desert bird focal species and bird species listed under the Migratory Bird Treaty Act. Impacts on potential nesting habitat for these species should be avoided during the nesting season.
	reduction/fragmentation would be small to moderate (0.3 to 5.5% of potentially suitable habitats identified for the species in the SEZ region would be lost).	Plant species that positively influence the presence and abundance of the desert bird focal species should be avoided to the extent practicable. These species include Goodding's willow, yucca, Joshua tree,
	Other impacts on birds could result from collision with vehicles and facility structures, surface water and sediment runoff from disturbed areas, fugitive dust generated by project activities, noise, lighting, spread of invasive species, accidental spills, and harassment.	mesquite, honey mesquite, screwbean, desert mistletoe, big saltbush, smoketree, and catclaw acacia.
	Indirect impacts on areas outside the SEZ (e.g., impacts caused by dust generation, erosion, and sedimentation) are expected to be negligible with implementation of proposed design features.	Take of golden eagles and other raptors should be avoided. Mitigation regarding the golden eagle should be developed in consultation with the USFWS and CDFG. A permit may be required under the Bald and Golden Eagle Protection Act.
		To the extent practicable, ephemeral drainages, Ford Dry Lake and Palen Lake, wetlands, and the CRA should be avoided.
Wildlife: Mammals ^b	Direct impacts on cougar, mule deer, small game, furbearers, and small mammals on the SEZ from habitat disturbance and long-term habitat reduction/fragmentation would be moderate (3.3 to 7.2% of potentially suitable habitats identified for the species in the SEZ region would be lost).	The fencing around the solar energy development should not block the free passage of mule deer between the Colorado River and mountains or foothills.

Resource Area	Environmental Impacts—Proposed Riverside East SEZ	SEZ-Specific Design Features
Wildlife: Mammals ^b (Cont.)	Although the Riverside East SEZ falls within the overall range of the cougar, desert habitat is not the preferred habitat for the species. It is unlikely that impacts from solar energy development within the SEZ would represent an actual loss of occupied habitat.	To the extent practicable, ephemeral drainages, Ford Dry Lake and Palen Lake, wetlands, and the Colorado River Aqueduct should be avoided.
	Mule deer could occur within the desert scrub and desert wash habitats of the SEZ for portions of the year, particularly when standing water occurs in Ford Dry Lake and Palen Lake. Fencing around a large solar development within the SEZ could affect movement of mule deer between the Colorado River and mountains or foothills.	
	Other impacts on mammals could result from collision with vehicles and fences, surface water and sediment runoff from disturbed areas, fugitive dust generated by project activities, noise, lighting, spread of invasive species, accidental spills, and harassment.	
	Indirect impacts on areas outside the SEZ (e.g., impacts caused by dust generation, erosion, and sedimentation) are expected to be negligible with implementation of proposed design features.	
Aquatic Biota ^b	No permanent water bodies or streams are present within the boundaries of the Riverside East SEZ. Within the SEZ and the area of potential indirect effects, aquatic biota, if present in Palen Lake, Ford Dry Lake, and wetlands, could be affected by ground disturbance, contaminants inputs, and soil deposition from runoff and fugitive dust.	Ground disturbance near McCoy Wash, Palen Lake, Ford Dry Lake and wetlands should be avoided or minimized to the extent practicable.
	About 31 mi (50 km) of the Colorado River Aqueduct is present primarily along the western edge of the SEZ. Aquatic organisms present in this feature could be affected by airborne particulate deposition originating from the SEZ especially for ground disturbance occurring along the western boundary of the SEZ.	None.

Resource Area	Environmental Impacts—Proposed Riverside East SEZ	SEZ-Specific Design Features
Special Status Species ^b	Potentially suitable habitat for 69 special status species occurs in the affected area of the Riverside East SEZ. For most of these special status species, between 1% and 10% of the potentially suitable habitat in the region occurs in the area of direct effects; for several dune-obligate species, up to 32% of the potentially suitable habitat in the region occurs in the area of direct effects.	Pre-disturbance surveys should be conducted within the SEZ to determine the presence and abundance of special status species. Disturbance to occupied habitats for these species should be avoided or minimized to the extent practicable. If avoiding or minimizing impacts to occupied habitats is not possible for some species, translocation of individuals from areas of direct effect; or compensatory mitigation of direct effects on occupied habitats could reduce impacts. A comprehensive mitigation strategy for special status species that used one or more of these options to offset the impacts of development should be developed in coordination with the appropriate federal and state agencies.
		Disturbance of desert playa and wash habitats within the SEZ should be avoided or minimized to the extent practicable. In particular, development should be avoided in and near Ford Dry Lake, Palen Lake, and McCoy Wash within the SEZ. Avoiding or minimizing disturbance of these habitats could reduce impacts on 9 special status species. Avoiding or minimizing disturbance of sand dunes and sand transport systems, woodlands, rocky cliffs, and outcrops on the SEZ could reduce impacts on 20 special status species. Consultations with the USFWS and the CDFG should be conducted to address the potential for impacts on the desert tortoise a species listed as

Resource Area	Environmental Impacts—Proposed Riverside East SEZ	SEZ-Specific Design Features
Special Status Species ^b (Cont.)		threatened under the ESA and CESA. Consultation would identify an appropriate survey protocol, avoidance measures, and, if appropriate, reasonable and prudent alternatives, reasonable and prudent measures, and terms and conditions for incidental take statements.
		Harassment or disturbance of special status species and their habitats in the affected area should be mitigated by identifying any additional sensitive areas and implementing necessary protection measures based upon consultation with the USFWS and CDFG.
Air Quality and Climate	<i>Construction:</i> Temporary exceedances of AAQS for PM_{10} and $PM_{2.5}$ at the SEZ boundaries; higher concentrations would be limited to the immediate area surrounding the SEZ boundary and would decrease quickly with distance. For construction occurring in the west-central portion of the SEZ, fugitive dust emissions could result in considerable impacts at the nearest federal Class I area (Joshua Tree NP). (Conservative assumptions e.g., three simultaneous construction projects occurring in close proximity to the Joshua Tree NP resulted in these estimates). Engine exhaust of heavy equipment and vehicles could cause some impacts on air-quality-related values (e.g., visibility and acid deposition) at the nearest federal Class I area. NO _x emissions from engine exhaust would be the primary contributors to potential impacts on AQRVs.	None.

Resource Area	Environmental Impacts—Proposed Riverside East SEZ	SEZ-Specific Design Features
Air Quality and Climate (Cont.)	<i>Operations</i> : Positive impact due to avoided emission of air pollutants from combustion-related power generation: 30 to 54% of total emissions of SO ₂ , NO _x , Hg, and CO ₂ from electric power systems in the state of California avoided (up to 7,272 tons/yr SO ₂ , 11,944 tons/yr NO _x , 0.11 ton/yr Hg, and 28,258,000 tons/yr CO ₂).	
Visual Resources	Large visual impacts on the SEZ and surrounding lands within the SEZ viewshed due to major modification of the character of the existing landscape; potential additional impacts from construction and operation of transmission lines and access roads within the SEZ. Residents, workers, and visitors to the area may experience visual impacts from solar energy facilities located within the SEZ (as well as any associated access roads and transmission lines) as they travel area roads. Nearby residents could be subjected to large visual impacts from solar energy development within the SEZ.	Within the SEZ, in areas west of the northwest corner of Section 6 of Township 006S Range 017E, and in areas north and west of the northwest corner of Section 30 of Township 005S Range 018E, visual impacts associated with solar energy development in the SEZ should be consistent with VRM Class II management objectives, as determined from KOPs to be selected by the BLM within Joshua Tree NP and the Palen-McCoy WA.
	The SEZ is located within the CDCA. While renewable energy development is allowable within the SEZ under the CDCA management plan, substantial, immitigable visual impacts will occur within the CDCA in the SEZ and surrounding lands. The SEZ is adjacent to Joshua Tree NP and Joshua Tree WA. Because of the open views of the SEZ and/or elevated viewpoints, strong visual contrasts could be observed by NP and WA visitors. The SEZ is adjacent to the Big Maria Mountains WA. Because of the open views of the SEZ and/or elevated viewpoints, strong visual contrasts could be observed by WA visitors.	Within the SEZ, in areas visible from and within 3 mi (4.8 km) of the Rice Valley or Big Maria Mountains WSAs, visual impacts associated with solar energy project operation should be consistent with VRM Class II management objectives, as experienced from KOPs (to be determined by the BLM) within the WSAs, and in areas visible from between 3 and 5 mi (4.8 and 8.0 km); visual impacts should be consistent with VRM Class III management objectives.
	The SEZ is located 1.1 mi (1.8 km) from the Chuckwalla Mountains WA. Because of the open views of the SEZ and elevated viewpoints, weak to strong visual contrasts could be observed by WA visitors.	

Environmental Impacts—Proposed Riverside East SEZ	SEZ-Specific Design Features
The SEZ is located 5 mi (8 km) from the Little Chuckwalla Mountains WA. Because of the open views of the SEZ and elevated viewpoints, moderate to strong visual contrasts could be observed by WA visitors.	
The SEZ is adjacent to the Palen-McCoy WA. Because of the open views of the SEZ and/or elevated viewpoints, weak to strong visual contrasts could be observed by WA visitors.	
The SEZ is located 6 mi (10 km) from the Palo Verde Mountains WA. Because of the open views of the SEZ and elevated viewpoints, weak to moderate visual contrasts could be observed by WA visitors.	
The SEZ is located 0.5 mi (0.8 km) from the Rice Valley WA. Because of the open views of the SEZ and elevated viewpoints, strong visual contrasts could be observed by WA visitors.	
The SEZ is located 5 mi (8 km) from the Corn Springs Scenic ACEC. Because of the open views of the SEZ and elevated viewpoints, strong visual contrasts could be observed by ACEC visitors.	
Approximately 23 mi (37.0 km) of the Bradshaw Trail BLM Backcountry Byway is within the SEZ viewshed. Weak to strong visual contrasts could be observed within and near the SEZ by travelers on the Bradshaw Trail. Approximately 79 mi (127 km) of I-10 is within the SEZ viewshed. Six mi (10 km) of I-10 is within or abuts the SEZ. An additional 34 mi (55 m) is within 0.67 mi (1.1 km). Strong visual contrasts could be observed within and near the SEZ by travelers on I-10. Approximately 27 mi (43 m) of State Route 177 is within the SEZ viewshed. Eight mi (13 km) of State Route 177 is within the SEZ. Strong visual contrasts could be observed within and near the SEZ by travelers on State Route 177	
	 Environmental Impacts—Proposed Riverside East SEZ The SEZ is located 5 mi (8 km) from the Little Chuckwalla Mountains WA. Because of the open views of the SEZ and elevated viewpoints, moderate to strong visual contrasts could be observed by WA visitors. The SEZ is adjacent to the Palen-McCoy WA. Because of the open views of the SEZ and/or elevated viewpoints, weak to strong visual contrasts could be observed by WA visitors. The SEZ is located 6 mi (10 km) from the Palo Verde Mountains WA. Because of the open views of the SEZ and elevated viewpoints, weak to moderate visual contrasts could be observed by WA visitors. The SEZ is located 0.5 mi (0.8 km) from the Palo Verde Mountains WA. Because of the open views of the SEZ and elevated viewpoints, strong visual contrasts could be observed by WA visitors. The SEZ is located 0.5 mi (0.8 km) from the Rice Valley WA. Because of the open views of the SEZ and elevated viewpoints, strong visual contrasts could be observed by WA visitors. The SEZ is located 5 mi (8 km) from the Corn Springs Scenic ACEC. Because of the open views of the SEZ and elevated viewpoints, strong visual contrasts could be observed by ACEC visitors. Approximately 23 mi (37.0 km) of the Bradshaw Trail BLM Backcountry Byway is within the SEZ viewshed. Weak to strong visual contrasts could be observed within and near the SEZ by travelers on the Bradshaw Trail. Approximately 79 mi (127 km) of I-10 is within the SEZ viewshed. Six mi (10 km) of I-10 is within or abuts the SEZ. An additional 34 mi (55 m) is within and near the SEZ by travelers on I-10. Approximately 27 mi (43 m) of State Route 177 is within the SEZ viewshed. Eight mi (13 km) of State Route 177 is within the SEZ by travelers on State Route 177.

Resource Area	Environmental Impacts—Proposed Riverside East SEZ	SEZ-Specific Design Features
Visual Resources (Cont.)	The communities of Blythe, East Blythe, Ehrenberg, Palo Verde, Ripley, Cibola (Arizona), and Desert Center (including the Lake Tamarisk development) are located within the viewshed of the SEZ, although slight variations in topography and vegetation provide some screening. Strong visual contrasts may be observed within Desert Center and Lake Tamarisk. Moderate to strong visual contrasts may be observed within Blythe, East Blythe, and Ripley. Weak to moderate visual contrasts may be observed within Ehrenberg and Palo Verde.	
Acoustic Environment	Construction. Estimated noise levels at the nearest residences located just next to the west-central SEZ boundary would be about 74 dBA L_{eq} , which is higher than Riverside County regulation of 45 dBA daytime L_{eq} For a 10-hour daytime work schedule, 70 dBA L_{dn} at the nearest residences would be well above the EPA guideline of 55 dBA L_{dn} for residential areas. <i>Operations</i> . Noise levels at the nearest residences from a CSP solar facility would be 51 dBA L_{eq} , which is higher than the Riverside County standard of 45 dBA daytime L_{eq} . For 12-hour daytime operations, the estimated 49 dBA L_{dn} falls below the EPA guideline of 55 dBA L_{dn} for residential areas. However, for facilities with 6-hour TES, the estimated nighttime sound level at the nearest residences would be 61 dBA L_{eq} , which is higher than the Riverside County standard of 45 dBA daytime L_{eq} . The day-night average level is estimated to be about 63 dBA L_{dn} , which is higher than the EPA guideline of 55 dBA L_{dn} for residential areas. If 80% of the SEZ were developed with dish engine facilities, the estimated noise level of 59 dBA L_{eq} at the nearby residence would be higher than the Riverside County regulation of 45 dBA daytime L_{eq} . For 12-hour daytime operations, the estimated 56 dBA L_{dn} at the nearby residence would be a little higher than the EPA guideline of 55 dBA L_{dn} for residential areas.	Noise levels from cooling systems equipped with TES should be managed so that levels at the nearby residences to the west and to the east of the SEZ are kept within applicable guidelines. This could be accomplished in several ways, for example, through placing the power block approximately 1 to 2 mi (1.6 to 3 km) or more from residences, limiting operations to a few hours after sunset, and/or installing fan silencers. Dish engine facilities within the Riverside East SEZ should be located more than 1 to 2 mi (1.6 to 3 km) from the nearby residences to the west and the east of the SEZ (i.e., the facilities should be located in other portions of the proposed SEZ). Direct noise control measures applied to individual dish engine systems could also be used to reduce noise impacts at the nearest residences.

Resource Area	Environmental Impacts—Proposed Riverside East SEZ	SEZ-Specific Design Features
Paleontological Resources	The potential for impacts on significant paleontological resources at the SEZ is relatively unknown, but could be high in some areas. A more detailed investigation of the local geological deposits of the SEZ and their potential depth is needed; a paleontological survey would likely be required prior to project approval.	The need for and the nature of any SEZ-specific design features would depend on findings of paleontological surveys.
Cultural Resources	Direct impacts on significant cultural resources could occur in the proposed Riverside East SEZ; however, a cultural resource survey of the entire area of potential effect of a proposed project would first need to be conducted to identify archaeological sites, historic structures and features, and traditional cultural properties, and an evaluation would then be needed to determine whether any are eligible for listing in the NRHP.	Significant resources clustered in specific areas, such as those in the vicinity of Palen and Ford Dry Lakes, focused DTC/C-AMA activity areas that retain sufficient integrity, and Native American trails evident in the desert pavement should be avoided.
	Numerous prehistoric and Native American sites and trails are potentially located within the SEZ and could be affected by solar energy development. Potential impacts on locations in the area that are of cultural or religious significance to Native American Tribes must also be evaluated.	Troops in training for World War II often used the same locations that Native Americans did for similar purposes. Any excavation of historic sites should take into consideration the potential for the co-location of prehistoric and ethnohistoric components.
	Activities associated with the WWII DDTC were also prominent in the valley, and physical remnants of those activities are present within the SEZ and could be affected.	Other possible design features specific to the SEZ would be determined through consultation with the California SHPO and affected Tribes.
Native American Concerns	Concerns have been expressed in the past over the Salt Song Trail, which passes down Palen Valley and through the Riverside East SEZ. Solar development within the SEZ is likely to be visible from the trail. Additional trail networks also go through or near the SEZ. Additional features of potential concern include Big Maria, Coxcomb, and Eagle Mountains, Alligator Rock, Black Rock, and McCoy Springs.	The need for and nature of SEZ-specific design features would be determined during government-to- government consultation with the affected Tribes.

Resource Area	Environmental Impacts—Proposed Riverside East SEZ	SEZ-Specific Design Features
Native American Concerns (Cont.)	As consultations continue, it is possible that other Native American concerns, regarding solar energy development within the SEZ will emerge. The Soboba Band of Luiseno Indians and the Quechan have expressed concerns over highly sensitive areas within their Tribal Traditional Use Areas.	
Socioeconomics	<i>Construction:</i> 1,181 to 15,633 total jobs; \$70 million to \$927 million income in ROI.	None.
	<i>Operations:</i> 498 to 11,670 annual total jobs; \$17 million to \$424 million annual income in the ROI.	
Environmental Justice	There are both minority populations and low-income populations, as defined by CEQ guidelines, within the 50-mi (80-km) radius around the boundary of the SEZ, meaning that any adverse impacts of solar projects could disproportionately affect minority and low-income populations.	None.
Transportation	The primary transportation impacts would result from commuting worker traffic. I-10 provides a regional traffic corridor that would experience small impacts for single projects that may have up to 1,000 daily workers, with an additional 2,000 vehicle trips per day (maximum). Such an increase is less than 10% of the current traffic on I-10. However, the exits on I-10 might experience moderate impacts with some congestion.	None.
	Should up to three large projects with approximately 1,000 daily workers each be under development simultaneously, an additional 6,000 vehicle trips per day could be added to I-10 in the vicinity of the SEZ, which is about a 25% increase in the current average daily traffic level on most segments of I-10 near the SEZ.	

Resource Area	Environmental Impacts—Proposed Riverside East SEZ	SEZ-Specific Design Features
Transportation (Cont.)	Because of the proximity of the Blythe and Desert Center Airports, without proper planning, there could be problems with reflector glare from the SEZ interfering with pilot vision during takeoffs and landings.	None.

Abbreviations: AAQS = ambient air quality standards; ACEC = Area of Critical Environmental Concern; BLM = Bureau of Land Management; BMP = best management practice; BOR = U.S. Bureau of Reclamation; CDCA = California Desert Conservation Area; CDFG = California Department of Fish and Game; CEQ = Council on Environmental Quality; CESA= California Endangered Species Act; CO₂ = carbon dioxide; dBA = A-weighted decibel; DoD = U.S. Department of Defense; DTC = Desert Training Center; EPA = U.S. Environmental Protection Agency; ESA = Endangered Species Act; FAA = Federal Aviation Administration; Hg = mercury; KOP = key observation point; L_{dn} = day-night average sound level; L_{eq} = equivalent continuous sound level; LTVA = long term visitor area; MTR = military training route; NO_x = nitrogen oxides; NP = National Park; NRHP = *National Register of Historic Places*; PM_{2.5} = particulate matter with an aerodynamic diameter of 2.5 µm or less; PM₁₀ = particulate matter with an aerodynamic diameter of 10 µm or less; PSD = prevention of significant deterioration;; PVID = Palo Verde Irrigation District; ROI = region of influence; SEZ = solar energy zone; SHPO = State Historic Preservation Office; SO₂ = sulfur dioxide; TDS = total dissolved solids; TES = thermal energy storage; USFWS = U.S. Fish and Wildlife Service; VRM = visual resource management; WA = Wilderness Area; WSA = Wilderness Study Area; WWII = World War II.

^a The detailed programmatic design features for each resource area to be required under BLM's proposed Solar Energy Program are presented in Appendix A, Section A.2.2. These programmatic design features would be required for development in the proposed Riverside East SEZ.

^b The scientific names of all plants, wildlife, aquatic biota, and special status species are provided in Sections 9.4.10 through 9.4.12.

1

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	<i>This page intentionally left blank.</i>
14	
15	

9.4.2 Lands and Realty

9.4.2.1 Affected Environment

6 The proposed Riverside East SEZ, at approximately 203,000 acres (821 km^2), is by far 7 the largest of the SEZs being considered in this PEIS. It stretches for about 45 mi (72 km) east to 8 west and measures about 25 mi (40 km) north to south. The towns of Blythe and Desert Center 9 mark the approximate eastern and western limits of the SEZ. The western border of the SEZ lies 10 close to much of the eastern border of Joshua Tree NP. The SEZ is located along a critical east-11 west corridor that contains I-10, numerous pipelines, and transmission lines and surrounds a 12 portion of the Los Angeles Metropolitan Water District (MWD) Colorado River Aqueduct 13 (CRA). Most of the pipelines are south of I-10 and outside of the SEZ, with the exception of the 14 parcel south of I-10 on the eastern side of the SEZ. Five large transmission lines plus one more under construction pass through portions of the SEZ, primarily in the southeast and west (BLM 15 16 2009c, 2010a). State Route 177 passes through the west side of the SEZ in a northeasterly direction, and the Midland-Rice Road and a railroad pass through the eastern portion of the SEZ 17 18 in a northwesterly direction.

19

1

2 3 4

5

20 In spite of this activity, most of the BLM-administered lands, especially those north of 21 I-10 in the east, those between I-10 and the Palen-McCoy Mountains in the central part of the 22 SEZ, and those on the west side of the Palen-McCoy Mountains and around Palen Lake, retain 23 an undeveloped character. BLM lands in the western portion of the SEZ near I-10 and Desert 24 Center and northwest of State Route 177 are also largely undeveloped, but the presence of 25 developed private land including some residences, the state highway, extensive MWD facilities, 26 a small airport, and the inactive Kaiser Mine and related facilities give the area a more developed 27 setting.

28

35

Although the SEZ contains only BLM-administered land, numerous parcels of private land totaling about 11,000 acres (45 km²) also are scattered throughout the SEZ, with additional private lands in near proximity to its external boundaries. There is also one section of state land surrounded by the SEZ. The city of Blythe, California, on the eastern side of the SEZ, is surrounded by an extensive block of agricultural lands irrigated with water from the Colorado River.

36 A Section 368 federally designated, 2-mi (3-km) wide energy corridor on BLM 37 administered lands overlaps the SEZ along I-10. This corridor, which was originally established 38 in the CDCA Plan (BLM 1999), was recently also identified as a Section 368 corridor in the 39 West-wide Corridor PEIS (DOE and DOI 2008) (see also Section 3.2.5). There are also two 40 north-south corridors within the SEZ that were designated as part of the CDCA Plan. One 41 corridor is located in the western portion of the SEZ and one in the eastern portion. Although 42 both corridors have one transmission line in them, these corridors now may not be fully 43 functional since the eastern one crosses designated BLM wilderness (Big Maria Mountains and 44 Rice Valley WAs) and the western one crosses Joshua Tree NP. The portions of the corridors 45 south of the designated wildernesses and the park may still be useful.

As of February 2010, there were 15 active solar development applications wholly or
 partially within the Riverside East SEZ boundaries. Four of these applications are BLM fast track projects for which environmental reviews have begun.

9.4.2.2 Impacts

9.4.2.2.1 Construction and Operations

11 Development of the proposed Riverside East SEZ for utility-scale solar energy 12 production would establish a large and continuous industrial area along the 45-mi (72-km) 13 stretch of I-10 and in large blocks of public lands north and south of the highway. The SEZ would exclude many existing and potential uses of the land, perhaps in perpetuity. Since much of 14 the SEZ is undeveloped and rural, utility-scale solar energy development would be a new and 15 16 discordant land use to the area. Development along the I-10 corridor, State Route 177, and Midland Road would be highly visible to the public traveling these routes. In addition, solar 17 18 development in the western portion of the SEZ along State Route 177 and County Road 2 could 19 create conflict with existing residential use near Desert Center, Lake Tamarisk Resort, and 20 scattered private residences, including those associated with agricultural development. It also is 21 possible that with private land owner and state agreement, the 11,640 acres (47 km²) of private and state lands located within the external boundary of the SEZ eventually could be developed in 22 23 the same or a complementary manner as the public lands.

24

5 6

7 8 9

10

Current ROW authorizations on the SEZ would not be affected by solar energy
 development, because they are prior rights. Should the area be identified as an SEZ in the ROD
 for this PEIS, the BLM would still have discretion to authorize additional ROWs in the area until
 solar energy development was approved, and then future ROWs would be subject to the rights
 granted for solar energy development.

31 The parts of the three designated energy corridors that overlap the proposed SEZ, and 32 solar energy development of the SEZ, are currently in conflict with solar development, because 33 to avoid technical or operational interference with transmission facilities, solar energy facilities 34 cannot be constructed under transmission lines or over pipelines. The designated Section 368 transmission corridor along I-10 overlaps 15,700 acres (64 km²) within the SEZ and could limit 35 future solar development in that overlap area. The same constraint also may apply to the 36 remaining two corridors on the east and west sides of the SEZ. Alternatively, designation of the 37 38 SEZ could limit future use of these existing corridors. Transmission capacity is becoming a more 39 critical factor and reducing the east-west corridor capacity through this SEZ may have future but 40 currently unknown consequences. Near the western end of the SEZ, south of I-10, the existing corridor is limited by designated wilderness to the south and existing pipeline and transmission 41 42 line development; thus opportunities to place new transmission facilities in this corridor are 43 already constrained. This is an administrative conflict that can be addressed by the BLM in the 44 land use planning process, but there would be implications either for the amount of potential 45 solar energy development or for the amount of transmission capacity that can be accommodated. 46

The current public land ownership pattern, along with terrain and drainage features in the SEZ, could lead to the creation of isolated parcels of BLM-administered land scattered among solar facilities that would be both inaccessible to the public and difficult to manage.

1

2

3

9.4.2.2.2 Transmission Facilities and Other Off-Site Infrastructure

8 An existing 500-kV transmission line runs east-west along I-10 and parallel to the 9 southern SEZ boundary. In addition, a 230-kV line passes through the far western section of the 10 SEZ and a 69-kV line passes through the eastern portion of the SEZ. Establishing a connection to an existing line would not involve the construction of a new transmission line outside of the 11 12 SEZ. If a connecting transmission line were constructed in a different location outside of the SEZ 13 in the future, site developers would need to determine the impacts from construction and 14 operation of that line. In addition, developers would need to determine the impacts of line upgrades if they were needed. 15

Existing road access to the proposed Riverside East SEZ should be adequate to support construction and operation of solar facilities, because I-10 passes along the southern edge of the SEZ and there are several exits from I-10 as it passes by and through the SEZ. Because of the site access provided by I-10, no additional road construction outside of the SEZ was assumed to be required to support solar development of the SEZ.

22

16

- 23
- 24 25

9.4.2.3 SEZ-Specific Design Features and Design Feature Effectiveness

No SEZ-specific design features were identified. Implementing the programmatic design features described in Appendix A, Section A.2.2, as required under BLM's proposed Solar Energy Program would provide mitigation for some identified impacts. The exceptions would be impacts related to the exclusion of many existing and potential uses of the public land, perhaps in perpetuity; the visual impact of an industrial-looking solar facility within an otherwise rural area; and induced land use changes on state and private lands.

- 32
- 33

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	<i>This page intentionally left blank.</i>
14	
15	

9.4.3 Specially Designated Areas and Lands with Wilderness Characteristics

9.4.3.1 Affected Environment

1

2 3 4

5

25

26

27 28

29

36 37

38

39

40

41

6 The proposed Riverside East SEZ is located in the CDCA and is surrounded by specially 7 designated areas, including Joshua Tree NP, seven designated WAs (including wilderness in the 8 Joshua Tree NP), and seven ACECs (see Figure 9.4.3.1-1). Corn Springs is the only ACEC 9 within the viewshed of the SEZ that has scenic values as one of its attributes. Alligator Rock, 10 Chuckwalla DWMA, Chuckwalla Valley Dune Thicket, Desert Lily Preserve, Mule Mountains, and Palen Dry Lake ACECs are identified for the protection of plant and animal species and 11 12 cultural or prehistoric resources. No lands with wilderness characteristics outside of designated WAs and WSAs have been identified within 25 mi (40 km) of the SEZ. 13 14

As part of the planning process for the BLM-administered lands in the CDCA, all public lands except for about 300,000 acres (1,214 km²) of scattered parcels were designated geographically into one of four multiple-use classes. The classification was based on the sensitivity of resources and kinds of uses for each geographic area. The four multiple-use classes are as follows (BLM 1999):

- Class C is for lands either designated as wilderness or for wilderness study areas. These lands are managed to protect their wilderness characteristics.
 Class L (Limited Use) protects sensitive, natural, scenic, ecological, and
 - Class L (Limited Use) protects sensitive, natural, scenic, ecological, and cultural resource values. Public lands designated as Class L are managed to provide for generally lower intensity, carefully controlled multiple use of resources, while ensuring that sensitive values are not significantly diminished.
- Class M (Moderate Use) is based upon a controlled balance between higher
 intensity use and protection of public lands. This class provides for a wide
 variety of present and future uses such as mining, livestock grazing,
 recreation, energy, and utility development. Class M management is also
 designed to conserve desert resources and to mitigate damage to those
 resources that permitted uses may cause.
 - Class I (Intensive use). Its purpose is to provide for concentrated use of lands and resources to meet human needs. Reasonable protection will be provided for sensitive natural and cultural values. Mitigation of impacts on resources and rehabilitation of affected areas will occur insofar as possible.
- Lands within the Riverside East SEZ are predominantly Class M with the exception of
 two parcels around Joshua Tree NP and the Palen McCoy WA, which are Class L. The MultipleUse Class Guidelines contained in the CDCA Plan indicate that wind, solar, or geothermal
- 45 electrical generation facilities could be allowed in both of these Classes.

FIGURE 9.4.3.1-1 Specially Designated Areas in the Vicinity of the Proposed Riverside East SEZ

9.4.3.2 Impacts

9.4.3.2.1 Construction and Operations

6 The potential impact from solar development within the proposed Riverside East SEZ on 7 specially designated areas possessing unique or sensitive visual resources is difficult to quantify 8 and would vary by solar technology employed, the size of the area developed for solar energy 9 facilities, the specific area affected, and the perception of individuals viewing the development. 10 Development of the SEZ, especially full development, would be a dominating factor in the viewshed from large portions of some of these specially designated areas, as summarized in 11 12 Table 9.4.3.2-1. This table assumes the use of the power tower solar energy technology, which 13 would have the largest potential visual effect because of the height of this type of facility. The 14 potential impacts in terms of acreage of visually sensitive, specially designated areas affected 15 would be somewhat less for smaller solar energy facilities. See Section 9.4.14 for a more 16 complete review of these impacts.

17

25

1

2 3 4

5

In general, the closer a viewer is to solar development, the greater the apparent size and
level of detail visible, usually resulting in greater perceived impacts on various resources.
Although impact levels are usually "banded" based on distance (e.g., 0 to 5 mi, 5 to 15 mi [0 to
8 km, 8 to 24 km]), in general, actual perceived impacts decrease gradually as distance increases.
Additionally, dense solar facilities and/or large solar facilities may have very large visual
impacts, even at longer distances. See Section 9.4.14 for a more thorough discussion of visual
impacts associated with solar energy development.

The viewing height above a solar development area also is important to perceived impact levels, since higher elevation viewpoints show more of the facilities and make the regular, manmade geometry of the solar arrays more apparent. In the case of the Riverside East SEZ, the low elevation of the SEZ in relation to surrounding specially designated areas would tend to highlight the industrial development present in the SEZ.

- An individual viewer's expectations can also influence perceived impacts. For example, recreationists seeking a wilderness or national park experience would likely be more adversely affected by the sight of intensive solar development than commuting workers traveling along the highway.
- 36

31

The occurrence of glint and glare at solar facilities could potentially cause large though temporary increases in brightness and visibility of the facilities. The visual contrast levels that were assumed to assess potential impacts on specially designated areas do not account for potential glint and glare effects; however, these effects would be incorporated into a future siteand project-specific assessment that would be conducted for specific proposed utility-scale solar energy projects.

43

TABLE 9.4.3.2-1 Specially Designated Areas Potentially within the Viewshed of Solar Facilities within the Proposed Riverside East SEZ

		In 5-mi (8-l	cm) Viewshed	In 15-mi (24-k	m) Viewshed	In 25-mi (40-	km) Viewshed
Area Name	Total Acres	Acres	Percentage	Acres	Percentage	Acres	Percentage
California Desert Conservation Area	25,919,319 ^a	763,254	2.9	1,243,222	4.8	1,494,552	5.8
Joshua Tree NP	793,331	53,426	6.7	111,416	14.0	117,591	14.8
Cibola National Wildlife Refuge	18,398	,		7,336	39.9	17,121	93.1
Corn Springs ACEC	2,463	352	14.3	1,075	43.6	1,080	43.8
WAs							
Big Maria Mountains	46,056	8,873	19.3	8,829	19.2	8,875	19.3
Chuckwalla Mountains	88,202	31,482	35.7	49,952	56.6	49,913	56.6
Joshua Tree	586,623	40,421	6.9	96,117	16.4	99,460	17.0
Little Chuckwalla Mountains	28,708	76	0.3	16,679	58.1	16,729	58.3
Palen/McCoy	224,414	95,559	42.6	170,666	76.0	170,660	76.0
Palo Verde Mountains	30,403			13,254	43.6	13,252	43.6
Rice Valley	43,412	7,881	18.2	35,773	82.4	35,792	82.4

^a To convert acres to km², multiply by 0.004047.

There are seven ACECs near the SEZ. Potential impacts on these ACECs are indirect and related to the potential impact from additional human use of the areas because of the construction and operation of solar facilities. Four of these ACECs (Chuckwalla DWMA, Desert Lily Preserve, Palen Dry Lake, and Mule Mountains) are immediately adjacent to the boundaries of the SEZ.

Because the western portion of the SEZ currently contains numerous visible man-made
features, impacts on wilderness and scenic values may be somewhat less significant than in areas
that are more pristine.

The lack of development in the immediate region of the SEZ makes the night sky very dark and allows very good opportunities for night sky viewing. The NPS has identified concerns that solar facility development in the region both adjacent to and east of Joshua Tree NP could adversely affect the quality of the night sky environment as viewed from the park. The amount of light that may emanate from Riverside East solar facilities is not known but could affect night sky viewing from the NP and the surrounding wilderness areas.

17 18

19

20 21

22 23

24 25

26 27

28

29

30

Designated Wilderness

• The border of the Palen-McCoy WA abuts the Riverside East SEZ for about 33 mi (53 km) and is surrounded on three sides by the SEZ. Large portions of the viewshed from this wilderness area are not pristine; it includes an array of human-built structures (e.g., highways, roads, housing, railroads) as close as 2 mi (3 km) from its boundaries, which already have some effect on wilderness characteristics. However, because of the size and density of solar development, especially at full development, the new visual impacts of solar energy facilities generally would be much more intrusive than those that currently exist.

31 Designated wilderness within the 5 mi (8 km) viewshed of the SEZ includes about 96,000 acres (388 km²) (see Table 9.4.3.2-1). Within 15 mi (24 km) of 32 the SEZ, about 171,000 acres (692 km²) of designated wilderness is included 33 34 within the viewshed of the SEZ. Cumulatively, this amounts to about 76% of 35 the wilderness area. Additionally, the wilderness area would have clear and close views of the Iron Mountain SEZ to the north of the WA that could result 36 37 in the WA being completely ringed by solar energy development. It is 38 anticipated that wilderness characteristics throughout this wilderness area 39 would be adversely affected by the solar development in the SEZ and in the 40 region. 41

The Big Maria Mountains WA is within 0.25 to 2 mi (0.4 to 3 km) of the
boundary of the SEZ for about 13 mi (21 km). The viewshed from the
wilderness area is not pristine, but the unpaved road and railroad within the
viewshed are located far enough to the west of the boundary of the wilderness
area to not have a significant impact on the wilderness area. The affected

viewshed is restricted to the western slopes of the wilderness area that are within about 5 mi (8 km) of the SEZ and which constitute about 19% of the wilderness area. This area would be adversely affected by SEZ development that could potentially fill the low-lying valley to the west and below the wilderness area. Because the view of the solar development would be so extensive, it is anticipated that the effect on wilderness characteristics in the portions of the wilderness area within the viewshed of the SEZ would be very large. The majority of the area within the wilderness area to the east is outside of the viewshed of the SEZ and would not be affected by development within the SEZ.

The southern boundary of the Rice Valley WA ranges from 0.5 to 2 mi (1 to • 3 km) from the boundary of the SEZ for about 6 mi (10 km). The viewshed from the southern boundary of the wilderness area is not pristine and is influenced by the presence of an unpaved road, railroad, and several large mining operations. The portion of the wilderness aera that would be in view of development within the SEZ within 5 mi (8 km) is about 7,881 acres (4 km²). or about 18% of the wilderness area. In this area wilderness characteristics would be adversely affected by solar development in the SEZ that could potentially fill the low-lying valley to the south and below the wilderness area. Although the table shows a large acreage of the wilderness area within15 mi (24 km) of the SEZ, this is actually an anomaly in the viewshed analysis. The large majority of the wilderness area to the north actually is out of the viewshed of development within the SEZ and would not be affected by it (for more information on this, see the description of Rice Valley WA in Section 9.4.14.2.2.1)

28 The Chuckwalla Mountains WA is located south of I-10 and the SEZ. The 29 boundary of the wilderness area ranges from 1 to 3 mi (1.6 to 5 km) from the 30 SEZ. The elevation of the wilderness area rises continuously to the south, 31 affording unobstructed views of the SEZ to the north and east. About 32 31,000 acres (125 km²) of the wilderness area is within the 5-mi (8-km) 33 viewshed of the SEZ, and it is expected that wilderness characteristics within 34 this area would be adversely affected. The current viewshed from this 35 wilderness area is not pristine and includes an array of human-built structures 36 (e.g., highways, roads, railroads, power lines, residences, and agricultural 37 development) located from 0.5 to 5 mi (0.8 to 8 km) from the WA boundary. These projects already have some effect on wilderness characteristics; 38 39 however, because of the size and density of solar development that would be in view from the WA, especially at full development, the new visual impacts 40 of solar energy facilities generally would be much more intrusive than those 41 42 impacts that currently exist. All of the Chuckwalla WA is within about 12 mi 43 (19 km) of the SEZ, and within this distance about 56% of the WA, about 44 50,000 acres (202 km^2) is within the viewshed of the SEZ. At full 45 development, solar facilities could stretch to about 13 mi to the north of the 46 SEZ and more than 20 mi (32 km) east along I-10. Because of this extensive

1

2

3

4

5

6

7

8

9

10

11 12

13

14

15 16

17 18

19

20

21

22

23

24 25

26

27

1 2	view of solar development, it is anticipated that the cumulative adverse impact on wilderness characteristics within areas of this wilderness area within view
3	of the solar development would be large.
4 5	• The Little Chuckwalla and Palo Verde Mountains WAs are 5 and 6 mi (8 and
6	10 km), respectively, from the closest boundary of the SEZ. Both are almost
/	completely contained within the 15-mi (24-km) radius of solar development and about 76% and 82% of the wilderness areas, respectively, would be
0	included in the viewshed of the SEZ. The current viewshed from both
10	wilderness areas is not pristing and includes an array of human-built
11	structures; however, solar development, especially full development, would be
12	very visible from within portions of both of these wilderness areas. Because of
13	the extensive potential view of solar development to the north and east, there
14	would be adverse impacts on wilderness characteristics in the Little
15	Chuckwalla WA.
16	
17	• For the Palo Verde Mountains WA, because of the alignment of the of the
18	wilderness area relative to the SEZ, while the nearest boundary of the $\frac{1}{2}$
19	wilderness area is 6-mi (9.6-km) from the SEZ, most of the boundary where there is visibility of the SEZ is from 8 to 10 mi (12 to 16 km) distant
20	Viewshed analysis indicates that contrast levels caused by solar facilities
21	within the SEZ are not likely to exceed the moderate level. Because of the
22	distance between the SEZ and the wilderness area, the expected level of
24	contrast partial screening of the area from the SEZ by the Mule Mountains
25	and the presence of extensive agricultural development within the viewshed of
26	the SEZ, impacts on wilderness characteristics from solar development are
27	anticipated to be minor.
28	
29	
30	Areas of Critical Environmental Concern
31	
32	• The Corn Springs ACEC is designated for many reasons, including scenic
33	resources. The primary scenic portion of the area is in the canyon that runs
34 25	generally east-west and that is screened from the SEZ and would not be
33 26	affected by IL. Visitors would have clear views of the SEZ as they leave the
30 27	found in the canyon are consistive and could be adversaly affected if
38	development in the SEZ causes an increase in visitor traffic into the ΔCEC
39	development in the SEZ eduses an increase in visitor traine into the REEC.
40	Chuckwalla DWMA Desert Lily Preserve Mule Mountains and Palen
41	Dry Lake ACECs are located adjacent to the boundary of the SEZ
42	(see Figure 9.4.3.1-1). Alligator Rock, Corn Springs, and Chuckwalla Vallev
43	Dune Thicket ACECs are located in close proximity to the SEZ but do not
44	abut it. While these areas would not be directly affected by development of
45	the SEZ, it is possible that additional human traffic could be drawn to the
46	areas because of the solar facilities, and there is potential for unintended

impact. The major threat to these areas is uncontrolled vehicle use or vandalism/theft of cultural or prehistoric resources and increased management efforts may be needed to protect the resources of these ACECs. In addition, indirect impacts resulting from edge effects such as non-native species establishment and spread, habitat degradation and fragmentation, and increased predation on desert tortoises by ravens may occur.

Joshua Tree National Park

• Portions of Joshua Tree NP are adjacent or in close proximity to the SEZ and would have extensive views of solar energy development in the valley below the park. About 53,000 acres (214 km²) of the park is located within the 5-mi (8-km) viewshed of the SEZ, of which about 31,000 acres (125 km²) is designated as wilderness. A portion of the Coxcomb Mountains in the park is surrounded on three sides by the SEZ. The 15-mi (24-km) viewshed of the SEZ includes about 111,000 acres (449 km²) of the park, including about 96,000 acres (388 km²) of wilderness. Although development on private and BLM lands has already reduced wilderness characteristics, the potential development of the SEZ would result in large additional adverse effects on wilderness characteristics in the park.

The NPS has commented that the combined effects of solar energy development on public lands within and outside the SEZ adjacent to the park have a high potential to directly and negatively impact park resources in the Coxcomb and Eagle Mountains on the eastern boundary of the park. Primary concerns identified include potential for impacts on scenic views from the park, preservation of the desert soundscape, preservation of the night-sky viewing opportunities, and impacts on important wildlife corridors linking NPS- and BLM-managed lands.

The eastern portion of the Joshua Tree NP affords visitors unimpeded night sky viewing opportunities, while western areas of the park are highly affected by light pollution from the Coachella Valley and Los Angeles areas. Maintaining the high quality of night sky viewing in the eastern portion of the park is a paramount concern of the NPS. The NPS's concerns relate to any artificial light from night time maintenance activity and/or security lighting within 20 mi (32 km) of the park boundaries.

39 40 41

42

1

2

3

4

5

6

7 8 9

10 11

12

13

14

15 16

17

18 19

20

21

22 23

24 25

26

27

28 29

30

31 32

33

34

35

36

37

38

California Desert Conservation Area

The viewshed within 25 mi (40 km) of the Riverside East SEZ includes about 1,495,000 acres (6,050 km²), or about 5.8% of the CDCA (Table 9.4.3.2-1).
 Installation of renewable energy facilities is consistent with the CDCA Plan, but full development of the SEZ would adversely affect wilderness

5	
6	
7	Cibola National Wildlife Refuge
8	
9	• The Cibola Refuge is about 10 mi (16 km) southeast of the southeastern
10	portion of the SEZ. Although about 7,300 acres (30 km ²) of the refuge is
11	within the 15-mi (24 km) viewshed of the SEZ, there are no anticipated
12	impacts on the refuge.
13	
14	
15	9.4.3.2.2 Transmission Facilities and Other Off-Site Infrastructure
16	
17	Because of the availability of an existing transmission line and access to I-10, no
18	additional construction of transmission or road facilities was assessed. Should additional
19	transmission lines be required outside of the SEZ, there may be additional impacts to specially
20	designated areas. See Section 9.4.1.2 for the development assumptions underlying this analysis.
21	

1

2

3

4

9.4.3.3 SEZ-Specific Design Features and Design Feature Effectiveness

characteristics in six designated wilderness areas including designated

wilderness in Joshua Tree NP. Should solar energy development occur,

undeveloped character of large portions of the CDCA would be changed.

because of the size and visual impact of solar facilities, the current

25 Implementing the programmatic design features described in Appendix A, Section A.2.2, as required under BLM's proposed Solar Energy Program, would provide some mitigation for 26 27 identified impacts. The exceptions would be that SEZ development would adversely affect 28 wilderness characteristics in the Palen-McCoy, Rice Valley, Big Maria Mountains, Chuckwalla 29 Mountains, and Little Chuckwalla Mountains WAs and in Joshua Tree NP. These impacts would 30 not be fully mitigable. The night sky viewing experience in the Joshua Tree NP could also be 31 adversely affected. Required programmatic design features included in Appendix A, 32 Section A.2.2, may reduce visual impacts on wilderness characteristics, scenic resources, and 33 night sky viewing opportunities. It is anticipated that even with the adoption of the design 34 features, adverse impacts on wilderness characteristics would not be completely mitigated and 35 residual impacts would remain. 36 37 A proposed design feature specific to the proposed SEZ is as follows: 38

- Once construction of solar energy facilities begins, the BLM would monitor whether there are increases in traffic to the seven ACECs in and near the SEZ and determine whether additional design features are required to protect the resources in these areas.
- 43 44

42

39

40 41

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	This page intentionally left blank.
14	
15	
1 9.4.4 Rangeland Resources 2 3 Rangeland resources include livestock grazing and wild horses and burros, all of 4 which are managed by the BLM. These resources and possible impacts on them from 5 solar development within the proposed Riverside East SEZ are discussed in Sections 9.4.4.1 6 and 9.4.4.2. 7 8 9 9.4.4.1 Livestock Grazing 10 11 12 9.4.4.1.1 Affected Environment 13 14 A portion of the SEZ was at one time part of the Ford Dry Lake grazing allotment, but 15 the allotment has been closed to grazing through a land use plan decision (BLM 2009c); no livestock grazing is authorized within the SEZ. 16 17 18 19 9.4.4.1.2 Impacts 20 21 There would be no impacts on livestock grazing. 22 23 24 9.4.4.1.3 SEZ-Specific Design Features and Design Feature Effectiveness 25 26 No SEZ-specific design features would be necessary to protect or minimize impacts on 27 livestock grazing. 28 29 30 9.4.4.2 Wild Horses and Burros 31 32 33 9.4.4.2.1 Affected Environment 34 35 Section 4.4.2 discusses wild horses (*Equus caballus*) and burros (*E. asinus*) that occur 36 within the six-state study area. Twenty-two BLM wild horse and burro HMAs occur within 37 California. Also, several HMAs in Arizona are located near the Arizona-California border. 38 Portions of three HMAs are located within 50 mi (80 km) of the proposed Riverside East SEZ. 39 The closest is the Cibola-Trigo HMA, located 9 mi (14 km) east of the SEZ (Figure 9.4.4.2-1). 40 The Chemehuevi HMA is located about 27 mi (43 km) northeast of the SEZ, and the Chocolate-41 Mule Mountains HMA is about 15 m (24 km) south of the SEZ (Figure 9.4.4.2-1). The Cibola-42 Trigo HMA contains an estimated 285 horses and 393 burros, the Chemehuevi HMA an 43 estimated 201 burros, and the Chocolate-Trigo HMA an estimated 120 burros (BLM 2009b). 44 45 In addition to the HMAs managed by the BLM, the U.S. Forest Service (USFWS) has 46 51 established wild horse and burro territories in Arizona, California, Nevada, New Mexico, and

FIGURE 9.4.4.2-1 BLM Wild Horse and Burro HMAs Located near the Proposed Riverside East SEZ Region (Source: BLM 2009a)

Utah, and is the lead management agency that administers 37 of these territories (Giffen 2009;
USFS 2007). The territory closest to the proposed Riverside East SEZ is the Big Bear Territory
within the San Bernardino National Forest. It is located more than 70 mi (113 km) northwest of
the SEZ. This territory is managed for a population of 60 wild burros (USFS 2007).

9.4.4.2.2 Impacts

Because the proposed Riverside East SEZ is 9 mi (14 km) or more from any wild horse and burro HMA and more than 70 mi (113 km) from any wild horse and burro territory administered by the USFS, solar energy development within the SEZ would not affect wild horses and burros managed by the BLM or the USFWS.

9.4.4.2.3 SEZ-Specific Design Features and Design Feature Effectiveness

The implementation of required programmatic design features described in Appendix A, Section A.2.2, would reduce the potential for effects on wild horses and burros. No SEZ-specific design features would be necessary to protect or minimize impacts on wild horses and burros.

20 21

22

6 7

8 9

10

11 12

13 14 15

16

Draft Solar PEIS

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	<i>This page intentionally left blank.</i>
14	
15	

9.4.5 Recreation

1

2 3 4

5

9.4.5.1 Affected Environment

6 Although the proposed Riverside East SEZ is very flat, it has diverse vegetation and 7 offers a range of seasonal recreation opportunities. While much of the area is dominated by 8 creosote shrublands or areas with very little vegetation, the eastern portion of the SEZ, especially 9 along McCoy Wash and its tributaries, contains a well-developed ironwood/palo verde 10 community. During the hottest summer months, the SEZ does not provide an environment 11 conducive to non-motorized recreation, but in the cooler months recreation opportunities are 12 abundant. The area has been traditionally used by the residents of Desert Center, Blythe, and 13 urban areas to the west. While no area-wide recreation data are available, the CDCA, like many 14 remote areas of the public lands, attracts individuals and families who are seeking undeveloped recreation opportunities. Opportunities for exploration of old townsites, mining operations, and 15 16 old roads as well as for wilderness activities, hunting and backcountry camping, hiking, and wildlife and wildflower viewing are important attractions throughout the CDCA. There are areas 17 18 both in and adjacent to the Riverside East SEZ that provide these kinds of attractions. 19

The Midland Long-Term Visitor Area (LTVA) managed by the BLM provides long-term camping opportunities in the winter months and is located along Midland Road in the eastern portion of the SEZ. This area hosted an estimated 605,000 visitor days of use in the 2009 to 2010 recreation season and 437,000 visitor days in the 2008 to 2009 season. Many of the visitors likely access areas within the SEZ while they are staying at the LTVA.

26 The SEZ area was included in the Northern and Eastern Colorado Desert Coordinated 27 Management Plan approved in 2002 (BLM 2002a,b). In the plan all routes of travel outside of 28 closed and OHV open areas were designated as open, closed, or limited. Numerous routes of 29 travel within the SEZ have been designated as available for use by vehicles. The Palen Pass 30 Road is a popular route; the route leaves State Route 177 in the northwest corner of the SEZ. 31 crosses between units of the Palen-McCoy WA, and travels to the southeast through portions of 32 the eastern side of the SEZ, eventually ending at Blythe. There are many OHV routes designated 33 as open within the proposed Riverside East SEZ; these are discussed in Section 9.4.21 and 34 shown in Figure 9.4.21-1.

- 35
- 36 37

9.4.5.2 Impacts

- 38
- 39
- 40 41

9.4.5.2.1 Construction and Operations

Although there are no recreation use data for the SEZ and surrounding lands, it is not anticipated that there would be a significant loss of recreational use caused by development of the Riverside East SEZ. However, some recreation visitors would be displaced from the portions of the SEZ developed for solar energy production, and because of the impact of a large and highly visible industrial-type development in the SEZ, opportunities for undeveloped and primitive recreation experiences in and around the SEZ would be lost or reduced. Roads and trails through areas developed for solar power production could be closed or rerouted, although existing county roads would continue to provide general access where they exist. Because the Midland LTVA is located within the SEZ, solar development could occur very close to it and the impact on winter visitors is not known. The combination of increased traffic and solar development in the areas around the LTVA could discourage some use of this area.

8 Open OHV routes crossing areas granted ROWs for solar facilities would be redesignated 9 as closed. However, a programmatic design feature addressing recreational impacts would 10 require consideration of development of alternative routes that would retain a similar level of 11 access across and to public lands as a part of the project proposal (see Section 5.5.1 for more 12 details on how routes coinciding with proposed solar facilities would be treated). 13

14 Based on viewshed analysis, the SEZ would be visible from a wide area. Development of 15 solar facilities in the SEZ would cause the loss of the currently expansive and undeveloped views 16 throughout the SEZ. The viewshed within 25 mi (40 km) of the SEZ alone includes about 17 1,495,000 acres (6,050 km²) within the CDCA (Table 9.4.3.2-1). The viewshed analysis shows the SEZ would be visible from portions of Joshua Tree NP, designated wilderness areas, other 18 19 specially designated areas outside of the SEZ. Because of the anticipated adverse impact on wilderness characteristics in about 184,000 acres (745 km²) of designated wilderness within the 20 21 most sensitive 5-mi (8-km) visual zone surrounding the proposed SEZ, losses in opportunities for 22 wilderness recreation use are anticipated. Recreational use of wilderness and other areas in 23 Joshua Tree NP within the viewshed of the SEZ would also be adversely affected.

24 25

7

26 27

33 34

35

9.4.5.2.2 Transmission Facilities and Other Off-Site Infrastructure

Because of the availability of an existing transmission line and access to I-10, no additional construction of transmission or road facilities was assessed. Should additional transmission lines be required outside of the SEZ, there may be additional impacts on specially designated areas. See Section 9.4.1.2 for the development assumptions underlying this analysis.

9.4.5.3 SEZ-Specific Design Features and Design Feature Effectiveness

36 Implementing the programmatic design features described in Appendix A, Section A.2.2, 37 as required under BLM's proposed Solar Energy Program, would provide adequate mitigation 38 for some identified impacts. The exceptions would be that some recreational use would be lost 39 from the area within the SEZ, and this loss would not be mitigated. In addition, adverse impacts 40 on wilderness recreation use in six designated wilderness areas, including within Joshua Tree 41 NP, would also not be completely mitigated.

- 42
- 43

- A proposed design features specific to the proposed SEZ is as follows:
- A buffer area between the Midland LTVA and solar development should be established to preserve the LTVA area. The size of the buffer should be determined based on the site and visitor specific criteria.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	This page intentionally left blank.
14	
15	

1 9.4.6 Military and Civilian Aviation 2 3 4 9.4.6.1 Affected Environment 5 6 With the exception of a large portion of the eastern side of the SEZ, the SEZ is largely 7 covered under eight MTRs that include a mixture of visual and instrument routes. Consequently, 8 the BLM has identified this as an area for which advance consultation with the DoD is required 9 prior to approval of activities that could adversely affect the use of the MTRs. 10 11 The Blythe public airport is located about 2 mi (3 km) southeast of the eastern portion of 12 the SEZ, while the Desert Center public airport is located within the external boundaries of the 13 SEZ on the western side. 14 15 16 9.4.6.2 Impacts 17 18 The development of any solar energy or transmission facilities that encroach into the 19 airspace of an MTR could interfere with military training activities and could create a safety 20 concern. While the military has indicated that solar development on portions of the Riverside 21 East SEZ is compatible with its existing uses, it has also commented that other portions should 22 have height limits for facilities, and some areas may be incompatible with existing military use 23 (Brasher 2009). 24 25 The system of military airspace in the Southwest overlaps much of the area of highest 26 interest for solar development, and there is the potential for solar development to result in 27 cumulative effects on the system of MTRs that stretch beyond only one SEZ or solar project. 28 29 Thermal plumes from the air-cooled condensers could be hazardous to low-flying aircraft 30 approaching or departing from either of the airports. In addition, glint and glare from reflective 31 mirrors is a potential source of glare that could cause flash blindness to pilots approaching or 32 departing the airports. 33 34 The proximity of the two public airports to the SEZ would require close coordination 35 with airport authorities and the FAA to ensure solar energy facilities do not interfere with airport 36 operation. 37 38 39 9.4.6.3 SEZ-Specific Design Features and Design Feature Effectiveness 40 41 Implementing the programmatic design features described in Appendix A, Section A.2.2, 42 as required under BLM's proposed Solar Energy Program, would provide adequate mitigation 43 for some identified impacts. An exception could be the potential impact on pilots using the two 44 local airports caused by glint and glare from reflective surfaces and from thermal plumes from

45

46

solar facilities.

 Proposed design features specific to the proposed SEZ include the following:
 Coordination with the FAA and local airport authorities should be required early in the project planning process to identify and mitigate potential impacts on the local airports.
 Precautions for pilots should be taken to avoid interference with flight paths or related flight operations and to avoid reflector glare hazards and thermal plumes.

1 2	9.4.7 Geologic Setting and Soil Resources					
3						
4	9.4.7.1 Affected Environment					
6						
7	9.4.7.1.1 Geologic Setting					
8						
9						
10	Regional Geology					
11	The proposed Riverside East SEZ lies within the eastern Mojave Desert region of the					
12	Basin and Range physiographic province in southeastern California. The western part of the SEZ					
14	covers land north of I-10 along the entire length of the Chuckwalla Valley and the southern part					
15	of Palen Valley. The Chuckwalla Valley is a 40-mi (64-km) long. northwest-trending					
16	intermontane basin that is bounded on the northwest by the Eagle Mountains and on the					
17	southwest by the Chuckwalla Mountains. The north-to-northwest-trending Coxcomb, Palen, and					
18	McCoy Mountains are to the north. The SEZ extends northward from Chuckwalla Valley into					
19	Palen Valley, a 20-mi (32-km) long, northwest-trending basin bounded on the southwest by the					
20	Coxcomb Mountains and on the northeast and east by the Granite and Palen Mountains,					
21	respectively (Figure 9.4.7.1-1).					
22						
23	The eastern portion of the proposed Riverside East SEZ sits on the Palo Verde Mesa,					
24 25	covering land both north and south of I-10. The mesa is bounded on the west-southwest by the					
23 26	The Palo Verde Valley, a river valley of the Colorado River, lies to the east (Figure 0.4.7.1.1)					
20	The rate verse valley, a river valley of the colorado River, hes to the east (right 9.4.7.1-1).					
28	Exposed sediments in the Chuckwalla Valley consist mainly of modern alluvium playa					
29	deposits, and dune sands (Figure 9.4.7.1-2). These sediments are underlain by basin-fill deposits					
30	of alluvium and fanglomerate of the Pinto (Pleistocene) and Bouse (Pliocene) Formations.					
31	Basin-fill is estimated to be as thick as 1 mi (1.6 km) in the central part of the valley and is the					
32	principal water-bearing units in the region (Rotstein et al. 1976; CDWR 2003; CEC 2010b). A					
33	good portion of the SEZ is covered by dune sand, especially along the central Chuckwalla					
34	Valley. Playa lake sediments, associated with Palen and Ford Dry Lakes, occur in the western					
35	and central parts of the SEZ. The surrounding mountains are composed of various igneous and					
36	metamorphic rocks of pre-Tertiary age covered by younger residual material.					
3/						
39	Topography					
40						
41	The proposed Riverside East SEZ spans the length of the Chuckwalla Valley; its western					
42	end covers portions of the northern Chuckwalla and Palen Valleys and its eastern end covers the					
43	Palo Verde Mesa. The northern part of the Chuckwalla Valley (between the Eagle and Coxcomb					
44	Mountains) slopes to the southeast, with elevations ranging from greater than 820 ft (250 m) on					

45 the alluvial fan surfaces flanking the surrounding mountains to less than 660 ft (200 m) in the

FIGURE 9.4.7.1-2 Geologic Map of the Proposed Riverside East SEZ Region (adapted from Ludington et al. 2007 and Gutierrez et al. 2010)

FIGURE 9.4.7.1-2 (Cont.)

SOL351

center of the valley. The Palen Valley slopes to the south-southeast. It is rimmed with alluvial
fans that coalesce in the center of the valley. Streams discharging to the valley drain to the lowest
elevation (about 430 ft [130 m]) at Palen Lake (Figure 9.4.7.1-3).

The central part of the Chuckwalla Valley trends to the east-southeast and is nearly flat. The lowest elevations occur within Ford Dry Lake (Figure 9.4.7-3).

Palo Verde Mesa is situated between the McCoy, Little Maria, and Big Maria Mountains.
It slopes to the southeast and ranges in elevation from 820 ft (250 m) along the flanks of the
surrounding mountain to less than 330 ft (100 m) along the its southeast-facing edge, which
borders the Mesa Verde (Colorado River) Valley. The mesa is drained by the McCoy Wash, a
perennial stream that flows to the southeast and discharges to a series of canals in the Mesa
Verde Valley (Figure 9.4.7.1-3).

Geologic Hazards

18 The types of geologic hazards that could potentially affect solar project sites and their 19 mitigation are discussed in Sections 5.7.3 and 5.7.4.2. The following sections provide a 20 preliminary assessment of these hazards at the proposed Riverside East SEZ. Solar project 21 developers may need to conduct a geotechnical investigation to assess geologic hazards locally 22 to better identify facility design criteria and site-specific mitigation measures to minimize their 23 risk.

24 25

4 5

6

7

15 16

17

26 Seismicity. The proposed Riverside East SEZ is located to the southeast of the Eastern 27 California Shear Zone and due east of the San Andreas Fault Zone-both seismically active 28 regions dominated by northwest-trending right-lateral strike slip faulting and categorized as 29 "potentially active" (i.e., having surface displacement within the last 11,000 years [Holocene]) 30 under the Alguist-Priolo Earthquake Fault Zoning Act (Figure 9.4.7.1-4). The term "potentially 31 active" generally denotes that a fault has shown evidence of surface displacement during 32 Quaternary time (the last 1.6 million years). However, because there are numerous such faults in 33 California, the State Geologist has introduced new, more discriminating criteria for zoning faults 34 under the Alquist-Priolo Act. Currently, zoned faults include those that are "sufficiently active," 35 showing evidence of surface displacement within the past 11,000 years along one or more of its 36 segments or branches, and "well-defined," having a clearly detectable trace at or just below the ground surface (Bryant and Hart 2007). 37

38

39 The Chuckwalla Valley is about 50 mi (80 km) to the southeast of the Pinto Mountain 40 Fault Zone in Riverside County. The active left-lateral strike-slip fault forms a south-facing 41 escarpment along the south margin of the eastern San Bernardino Mountains and marks the boundary between the Transverse Range and the Mojave Desert. Offsets of late Pleistocene and 42 43 Holocene sediments place the most recent movement along the fault at less than 15,000 years 44 ago. Slip rate and recurrence interval data for the Pinto Mountain fault have not been reported; 45 however, minor slip occurred along traces of the fault zone during the 7.3 magnitude Landers earthquake (a few miles to the south) on June 27, 1992 (Bryant 2000). 46

FIGURE 9.4.7.1-3 General Terrain of the Proposed Riverside East SEZ

FIGURE 9.4.7.1-4 Quaternary Faults and Volcanoes in Southern California (Sources: USGS and CGS 2009; USGS 2010e)

1 The Coachella Valley and San Bernardino Mountains sections of the San Andreas Fault 2 Zone are located about 35 mi (56 km) southwest of Chuckwalla Valley. The fault zone is 3 a network of historically active right-lateral strike-slip faults that together compose the transverse 4 boundary between the North American and Pacific plates. It stretches along most of California's 5 coastline southeast to the northern Transverse Range and inland to the Salton Sea 6 (Figure 9.4.7.1-4). Two major historic earthquakes have occurred along the San Andreas Fault: 7 the 1857 Fort Tejon earthquake (magnitude 7.9) and the 1906 San Francisco earthquake 8 (magnitude 7.8). Several smaller surface-rupturing earthquakes have also occurred in historic 9 time. Quaternary to Holocene creep rates ranging from 0.9 to 1.4 in./yr (23 to 35 mm/yr) have 10 been reported for the Coachella Valley and San Bernardino Mountains sections of the fault zone. Average recurrence intervals are estimated to range from 150 to 275 years for the 11 12 San Bernardino Mountains section and 207 to 233 years for the Coachella Valley section 13 (Bryant and Lundberg 2002a; Matti et al. 1992; USGS 1988). The USGS (1988) estimates that 14 the most recent activity along the Coachella Valley section was about $1,680 \pm 40$ years ago. 15 16 Since 1973, about 835 earthquakes have been recorded within a 61-mi (100-km) radius of the Riverside East SEZ. Three of these earthquakes registered Richter scale magnitudes greater 17 than 6.0: October 16, 1979 (ML¹ 6.1); April 26, 1981 (ML 6.3); and November 24, 1987 18 19 (ML 6.5). These earthquakes were centered along segments of the San Jacinto Fault Zone and 20 Brawley Seismic Zone located south of the Salton Sea (USGS 2010e). 21 22 23 *Liquefaction.* The proposed Riverside East SEZ lies within an area where the peak 24 horizontal acceleration with a 10% probability of exceedance in 50 years is between 0.06 and 25 0.20 g. Shaking associated with this level of acceleration is generally perceived as weak to light; 26 damage to structures would not be expected (USGS 2008b). 27

A regional evaluation for liquefaction hazards was completed for the San Bernardino Valley and vicinity in western San Bernardino county by Matti and Carson (1991); the study did not include the eastern part of San Bernardino county or Riverside county where the proposed Riverside East SEZ is located. San Bernardino Valley is located between the San Andreas and San Jacinto Fault Zones, where the peak horizontal acceleration with a 10% probability of exceedance in 50 years is much higher (between 0.88 and 1.62 g) than that calculated for the Chuckwalla Valley; therefore, only general conclusions from the study are presented here.

The evaluation considered three aspects of liquefaction: susceptibility, opportunity, and potential. Susceptibility identifies sedimentary materials that are likely to liquefy during a seismic event on the basis of their physical properties, depth to groundwater, expected earthquake magnitude, and strength of ground shaking. Opportunity considers the recurrence intervals for earthquake shaking strong enough to cause liquefaction in susceptible materials. The potential for ground failure due to liquefaction evaluation then combines the results of the

Richter scale magnitude (ML) was the original magnitude defined by Richter and Gutenberg for local earthquakes in 1935. It was based on the maximum amplitude recorded on a Wood-Anderson torsion seismograph but is currently calculated for earthquakes with magnitudes ranging from 2 to 6, using modern instruments with adjustments (USGS 2010f).

susceptibility and opportunity evaluations and identifies areas that are most and least likely to
 experience liquefaction (Matti and Carson 1991).

3

4 Investigators found that the level of liquefaction susceptibility was most dependent on 5 two factors: (1) depth to the groundwater table and (2) the intensity and duration of ground 6 shaking as determined by an earthquake's magnitude and the distance from the causative fault. 7 These factors in combination with penetration-resistance data from various locations within the 8 San Bernardino valley allowed them to conclude that liquefaction susceptibility gradually 9 decreases with increasing depth to groundwater, increasing distance away from the causative 10 fault, and increasing geologic age (and induration) of sedimentary materials. Although the playa sediments at Palen and Ford Dry Lakes could be considered susceptible to liquefaction since 11 12 groundwater occurs near the surface (Section 9.4.9.1.2), the low intensity of ground shaking 13 estimated for the general area indicates that the potential for liquefaction in the Chuckwalla Valley sediments is also likely to be low. 14

- 15
- 16

Volcanic Hazards. The nearest volcanoes are in the Amboy Crater and lava field (part of the Lavic Lake volcanic field), about 70 mi (110 km) northwest of the Riverside East SEZ and immediately northwest of Bristol Dry Lake (Figure 9.4.7.1-4). Amboy Crater is a 250-ft (76-m) high complex basaltic cinder cone surrounded by about 24.1 mi² (62 km²) of mafic lava flows. The basalt fields erupted from several vents about 10,000 years ago. Hazards resulting from these eruptions likely would be less severe than those from more silicic sources; they include the formation of cinder cones, small volumes of tephra, and lava flows (Parker 1963; Miller 1989).

24

25 The Pisgah Crater (also part of the Lavic Lake volcanic field), is immediately adjacent to the southeast corner of the Pisgah SEZ, about 105 mi (170 km) northwest of the Riverside East 26 27 SEZ (Figure 9.4.7.1-4). The 328-ft (100-m) high cinder cone is the youngest vent in the basalt 28 field. Lava flows issuing from vents within the basalt field sit above alluvial fan and playa lake 29 deposits. A similar, lesser known cinder cone and lava field also is present in the Sunshine Peak 30 area, about 6 mi (10 km) south. Researchers date the most recent activity associated with the 31 Pisgah volcano to about 25,000 years ago (Smithsonian 2010; Bassett and Kupfer 1964). Because of the basaltic composition of the Pisgah Crater lava, hazards likely would be similar to 32 33 those described for the Amboy Crater but would depend on factors such as location, size, and 34 timing (season).

35

36 The Cima dome and volcanic field east of Soda Lake is about 120 mi (190 km) north-37 northwest of the Riverside East SEZ (Figure 9.4.7.1-4). The volcanic field consists of about 38 40 basaltic cones and more than 60 associated mafic lava flows covering an area of about 58 mi² 39 (150 km²). It has had three periods of activity from the late Miocene through the late Pleistocene, 40 the most recent having occurred about 15,000 years ago (Dohrenwend et al. 1984). Because of its basaltic nature, hazards associated with the Cima volcanic field would like be similar to those 41 42 described for the Lavic Lake volcanic field, but would depend on factors such as location, size, 43 and timing (season).

- 44
- 45

1 The nearest active volcano is Mount St. Helens in the Cascade Range (Washington), 2 about 935 mi (1,505 km) north-northwest of the Chuckwalla Valley, which has shown some 3 activity as recently as 2008. The nearest volcano that meets the criterion for an unrest episode is 4 the Long Valley Caldera in east-central California, about 350 mi (565 km) northwest, which has 5 experienced recurrent earthquake swarms, changes in thermal springs and gas emissions, and 6 uplift since 1980 (Diefenbach et al. 2009). The Long Valley Caldera is part of the Mono-Invo 7 Craters volcanic chain, which extends from Mammoth Mountain (on the caldera rim) northward 8 about 25 mi (40 km) to Mono Lake. Small to moderate eruptions have occurred at various sites 9 along the volcanic chain in the past 5,000 years at intervals ranging from 250 to 700 years. 10 Wind-blown ash from some of these eruptions is known to have drifted as far east as Nebraska. While the probability of an eruption within the volcanic chain in any given year is small (less 11 12 than 1%), serious hazards could result from a future eruption. Depending on the location, size, 13 timing (season), and type of eruption, hazards could include mudflows and flooding, pyroclastic 14 flows, small to moderate volumes of tephra, and falling ash (Hill et al. 1998, 2000; Miller 1989). 15

16 Earthquake swarms also occurred at Medicine Lake Volcano in northern California (Cascade Range) for a few months in 1988. Medicine Lake is about 650 mi (1.050 km) northwest 17 18 of the Riverside East SEZ (Diefenbach et al. 2009). The most recent eruption at Medicine Lake 19 was rhyolitic in composition and occurred about 900 years ago (USGS 2010f). Nearby Lassen 20 Peak last erupted between 1914 and 1917; at least two blasts during this period produced 21 mudflows that inundated the valley floors of Hut and Lost Creeks to the east. Tephra from the 22 most violent eruption, occurring on May 22, 1915, was carried by prevailing winds and 23 deposited as far as 310 mi (500 km) to the east (Miller 1989).

24 25

Slope Stability and Land Subsidence. The incidence of rock falls and slope failures can be moderate to high along mountain fronts and can present a hazard to facilities on the relatively flat terrain of valley floors like the northern Chuckwalla and Palen Valleys if they are located at the base of steep slopes. The risk of rock falls and slope failures decreases toward the center of the flat valleys.

32 There has been no land subsidence monitoring within the Chuckwalla Valley to date; 33 however, 32- to 64-ft (10- to 20-m) long earth fissures and 3-ft (1-m) wide sinkholes associated 34 with subsidence have been documented in the Temecula area of southwestern Riverside County, 35 about 105 mi (170 km) west-southwest of the proposed Riverside East SEZ (Figure 9.4.7.1-4). 36 The subsidence is the result of groundwater overdrafts in the Temecula-Wolf Valley that have 37 caused differential compaction in the sediments of the underlying aquifer. Land failure caused by 38 sinkholes and fissures has been significant enough to damage buildings, roads, potable water and 39 sewer lines, and other infrastructure (Corwin et al. 1991; Shlemon 1995). Land subsidence has 40 also been documented as far back as the 1970s in southern California's San Joaquin Valley, 41 where the maximum subsidence due to extensive groundwater withdrawals for irrigation is 42 greater than 28 ft (9 m) (Galloway et al. 1999), and in the Wilmington Oil Field as a result of oil 43 extraction from the Los Angeles basin in southern Los Angeles County (Kovach 1974). 44 45

46 *Other Hazards.* Other potential hazards at the proposed Riverside East SEZ include those
 47 associated with soil compaction (restricted infiltration and increased runoff), expanding clay

1 soils (destabilization of structures), and hydro-compactable or collapsible soil (settlement).

Disturbance of soil crusts and desert varnish (and pavement) on soil surfaces may also increase
the likelihood of soil erosion by wind.

5 Alluvial fan surfaces, such as those typical of the northern Chuckwalla and Palen 6 Valleys, can be the sites of damaging high-velocity flash floods and debris flows during periods 7 of intense and prolonged rainfall. The nature of the flooding and sedimentation processes (e.g., streamflow versus debris flow) will depend on specific morphology of the fan 8 (National Research Council 1996). Currently, a series of levees rim parts of the northern border 9 10 of the proposed Riverside East SEZ in the northern Chuckwalla Valley (between the Eagle and Coxcomb Mountains) and Palen Valley (along the eastern flank of the Coxcomb Mountains). 11 The levees channel runoff to the CRA and offer some protection from flash floods and debris 12 13 flows (see Section 9.4.9.1.1). A series of diversion dikes also border the southern boundary of 14 the SEZ along the central Chuckwalla Valley to channel drainage issuing from the Chuckwalla 15 Mountains to the south.

16 17

18

9.4.7.1.2 Soil Resources

19 20 Because soil mapping is not complete for the Colorado Desert area, the map unit 21 composition within the proposed Riverside East SEZ has not been delineated. Therefore, only 22 soil series are shown in Figure 9.4.7.1-5 and described in Table 9.4.7.1-1. Soils within the SEZ are predominantly gravelly loams typical of alluvial fan terraces, which together make up about 23 24 64% of the site's soil coverage. These soils are gently to strongly sloping and characterized as 25 well to excessively well drained, with low to high runoff, and moderate to moderately rapid 26 permeability. Dune land soils, characterized by very rapid permeability and a high susceptibility 27 for wind erosion, cover about 24% of the SEZ. The poorly drained soils of Ford Dry Lake make 28 up only about 1% of the site's soil coverage. These soils are typical of ancient playa lake 29 deposits, with iron oxide and high salinity precipitates near the surface (Worley-Parsons 2010). 30 Biological soil crusts and desert pavement have not been documented in the SEZ, but may be 31 present.

32 33 34

35

9.4.7.2 Impacts

36 Impacts on soil resources would occur mainly as a result of ground-disturbing activities 37 (e.g., grading, excavating, and drilling), especially during the construction phase of a solar 38 project. These include soil compaction, soil horizon mixing, soil erosion and deposition by wind, 39 soil erosion by water and surface runoff, sedimentation, and soil contamination. Such impacts are 40 common to all utility-scale solar energy facilities in varying degrees and are described in more 41 detail for the four phases of development in Section 5.7.1.

Because impacts on soil resources result from ground-disturbing activities in the project area, soil impacts would be roughly proportional to the size of a given solar facility, with larger areas of disturbed soil having a greater potential for impacts than smaller areas (Section 5.7.2). The magnitude of impacts would also depend on the types of components built for a given facility since some components would involve greater disturbance and would take place over a longer time frame.

FIGURE 9.4.7.1-5 Soil Map for the Proposed Riverside East SEZ (Source: NRCS 2008)

Map Unit Symbol	Map Unit Name	Water Erosion Potential	Wind Erosion Potential	Description	Area in Acres ^b (% of SEZ)
s1136	Rositas-Dune land- Carsitas	_a	_a	<i>Rositas series</i> are gently sloping soils on dunes and sand sheets (gradients of 0 to 30%). Very deep and somewhat excessively drained with low surface runoff potential (high infiltration rate) and rapid permeability. Typically fine sand.	48,237 (24)
				<i>Dune land</i> soils are constantly shifting medium-grained sand deposited by wind blowing across the valley. Parent material consists of eolian sands. Little or no vegetation; very rapid permeability. <i>Carsitas series</i> are nearly level to strongly sloping soils on alluvial fans, moderately steep valley fills, and dissected alluvial fan remnants. Excessively drained with slow surface runoff (except during torrential events) and rapid permeability. Typically gravelly sand. Used for watershed and recreation; commercial source of sand and gravel.	
s1141	Rositas-Orita-Carrizo- Aca	_	-	<i>Rositas series</i> described above. <i>Orita series</i> are nearly level to gently sloping soils on fan remnants and terraces (gradients of 0 to 2%). Parent material consists of alluvium from mixed sources. Very deep and well-drained soils with very low to medium surface runoff potential and moderate permeability. Well suited for cultivation if irrigated but not as rangeland. <i>Carrizo series</i> are gently sloping soils on floodplains, alluvial fans, fan piedmonts, and bolson floors (gradients of 0 to 15%). Parent material consists of alluvium from mixed sources. Very deep and excessively drained soils with negligible to very low surface runoff potential and rapid to very rapid permeability. Typically extremely gravelly sand. Aridic soil moisture regime.	14,564 (7)

TABLE 9.4.7.1-1 Summary of Soil Series within the Proposed Riverside East SEZ

TABLE 9.4.7.1-1 (Cont.)

Map Unit Symbol	Map Unit Name	Water Erosion Potential	Wind Erosion Potential	Description	Area in Acres ^b (% of SEZ)
s1137	Rositas-Carrizo	_	_	Used mainly as rangeland and wildlife habitat. <i>Aco series</i> are gently sloping soils on terraces above the flood plain (gradients of 0 to 8%). Parent material consists of alluvium from mixed sources. Very deep and well-drained to somewhat excessively drained soils with low to medium surface runoff potential and moderately rapid permeability. Typically sandy loam. Used for cropland if irrigated.	5,774 (3)
				<i>Rositas series</i> as described above. <i>Carrizo series</i> are gently sloping soils on floodplains, alluvial fans, fan piedmonts, and bolson floors (gradients of 0 to 15%). They are very deep, excessively drained soils formed in mixed alluvium. Negligible to very low surface runoff potential; rapid to very rapid permeability. Typically extremely gravelly sand. Aridic soil moisture regime. Used mainly as rangeland and wildlife habitat.	
s1138	Playas	_	_	Very poorly drained soils formed in flats and closed basins; moderately to strongly saline. Medium surface runoff potential and low permeability.	2,741 (1)
s1126	Tecopa-Rock outcrop Lithic torriorthents	_	_	<i>Tecopa series</i> are sloping soils on low hills and low mountain side slopes (gradients of 15 to 75%). Very shallow and well-drained soils formed in residuum and colluvium weathered from metamorphic rocks with medium to rapid surface runoff and moderate permeability. Typically very gravelly sandy loam. Used mainly as desert rangeland. <i>Rock outcrop</i> occurs as low ridges or boulder piles and consists of variable rock types. Rapid surface runoff and barren of vegetation. <i>Lithic Torriorthents</i> are sloping soils on steep hill and mountain side slopes (gradients 15 to 60% or more) with rapid surface runoff. Typically very gravelly sand loam or loam.	2,168 (1)

^a A dash indicates water and wind erosion potential not rated at the Soil Series taxonomic level.

^b To convert acres to km^2 , multiply by 0.004047.

Source: NRCS (2006); CEC (2010).

Palen and Ford Dry Lakes may not be suitable locations for construction since lakebed
 sediments are often saturated with shallow groundwater and likely collapsible. The lakes sit
 within low elevation areas and serve as sumps for drainage in the Palen and Chuckwalla Valleys.

- 5
- 5 6

9.4.7.3 SEZ-Specific Design Features and Design Feature Effectiveness

No SEZ-specific design features were identified for soil resources at the proposed
Riverside East SEZ. Implementing the programmatic design features described in Appendix A,
Section A.2.2., as required under BLM's proposed Solar Energy Program, would reduce the
potential for soil impacts during all project phases.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	<i>This page intentionally left blank.</i>
14	
15	

9.4.8 Minerals (Fluids, Solids, and Geothermal Resources)

9.4.8.1 Affected Environment

Public land in the Riverside East SEZ was closed to locatable mineral entry in June 2009 pending the outcome of this solar energy PEIS. Currently, there are nine mill site claims within the SEZ (BLM and USFS 2010a) located in Township 4 South, Range 21 East, SBM, in Sections 22 and 27. The claims cover the southwest quarter of both sections.

There are no oil and gas leases within the proposed SEZ, although the area was largely leased at one time (BLM and USFS 2010a). There was also a geothermal lease in the area east of Desert Center, which is now closed (BLM and USFS 2010a) The area is still open for discretionary mineral leasing, including leasing for oil and gas and other leasable and saleable minerals.

9.4.8.2 Impacts

20 If the BLM identifies the area as an SEZ to be used for utility-scale solar development, it 21 would continue to be closed to all incompatible forms of mineral development with the exception 22 of the areas covered by existing mining claims. The existing claims represent prior existing 23 rights that, if valid, would preclude solar energy development as long as they are in place. 24 Development of solar resources in areas with mining claims could only occur if (1) the claims 25 are abandoned, (2) the claims are demonstrated to not be valid and are vacated by the BLM, or (3) the claims are purchased by a solar developer. The latter two of these approaches could 26 27 require considerable time, negotiation, and money to accomplish. Although they encumber only 28 a small percentage of the SEZ, the mining claims represent an impediment to moving forward 29 with planning solar development where they are located and are likely to prevent that 30 development in the immediate future. 31

32 Since there are no other mining claims within the SEZ, it is assumed there would be no 33 loss of locatable mineral production. 34

35 Since there are no current oil and gas leases within the SEZ, it is assumed there would be 36 no impacts on these resources if the SEZ were developed for solar energy production. In 37 addition, should any oil and gas resources be found, they could be accessible via directional 38 drilling from outside of the SEZ. 39

40 Solar energy development of the SEZ would preclude future surface use of the site to produce geothermal energy, although geothermal resources, should any be found, might be 41 42 accessed through directional drilling. Because of this option and the lack of current geothermal 43 leases within the SEZ, solar energy development is anticipated to have no impact on 44 development of geothermal resources.

If the area is identified as a solar energy development zone, some other mineral uses
 might be allowed on all or portions of the SEZ. For example, the sale of common minerals, such
 as sand, gravel, and mineral materials used for road construction, might take place in areas not
 directly developed for solar energy production.

9.4.8.3 SEZ-Specific Design Features and Design Feature Effectiveness

9 No SEZ-specific design features were identified. Implementing the programmatic design
10 features described in Appendix A, Section A.2.2, as required under BLM's proposed Solar
11 Energy Program would provide adequate mitigation for some identified impacts.

12 13

6 7

9.4.9 Water Resources

9.4.9.1 Affected Environment

6 The proposed Riverside East SEZ is located within the Southern Mojave-Salton Sea 7 subbasin of the California hydrologic region (USGS 2010a) and the Basin and Range 8 physiographic province characterized by intermittent mountain ranges and desert valleys 9 (Planert and Williams 1995). The proposed SEZ has surface elevations ranging between 10 450 and 1,000 ft (137 and 305 m) and contains several small alluvial fans between the surrounding mountains generating flow patterns toward Palen Lake and Ford Dry Lake, as well 11 12 as a general drainage pattern from the northwest to the southeast toward the Colorado River 13 (Figures 9.4.9.1-1 and 9.4.9.1-2). This region is located within the Mojave Desert, which is 14 characterized by extreme daily temperature ranges with low precipitation and humidity (CDWR 2009). Arid conditions exist because of low rainfall (annual precipitation is between 15 16 4 and 6 in./yr [10 and 15 cm/yr])(CDWR 2003), as well as high pan evaporation rates (130 in./yr [330 cm/vr]) (Cowherd et al. 1988; WRCC 2010a). 17

18

1

2 3 4

5

19 20

21

9.4.9.1.1 Surface Waters (Including Drainages, Floodplains, and Wetlands)

22 There are no perennial streams located in the proposed Riverside East SEZ. Palen Lake 23 and Ford Dry Lake are located in the western and central portions of the SEZ, respectively 24 (Figure 9.4.9.1-1). Palen Lake is a wet playa having groundwater located near the surface and 25 covering an area of 4,260 acres (17 km²) with only 750 acres (3 km²) within the boundaries of the SEZ. Ford Dry Lake is a dry lakebed covering 4,400 acres (18 km²), most of which is within 26 the SEZ boundaries. The primary surface water features within the proposed Riverside East SEZ 27 28 are several ephemeral washes coming off the surrounding mountains. A reach of the CRA is 29 located along the northwestern boundary of the SEZ with several levees along the base of the 30 Eagle Mountains and the Coxcomb Mountains that channel runoff from the mountains to culvert 31 crossings over the CRA and into the boundaries of the SEZ. The McCoy Wash drains the eastern 32 slope of the McCoy Mountains and flows to the southeast across the eastern portion of the SEZ 33 (Figure 9.4.9.1-2). Annual runoff estimates for the McCoy Wash are on the order of 800 ac-ft/yr 34 (987,000 m³/yr) (Metzger et al. 1973).

35

36 Flood hazards have not been identified (Zone D) for the region surrounding the proposed 37 Riverside East SEZ (FEMA 2009). The CDWR awareness floodplain mapping initiative 38 indicates that several areas of the proposed Riverside East SEZ are potentially within 100-year 39 floodplains (CDWR 2010b). These potential floodplain areas are concentrated around the 40 surrounding areas of Ford Dry Lake and Palen Lake, and the ephemeral washes draining the Eagle Mountains and Coxcomb Mountains (Figure 9.4.9.1-1), as well as the ephemeral washes 41 42 that drain the McCoy Mountains and Little Maria Mountains that feed McCoy Wash 43 (Figure 9.4.9.1-2). Intermittent flooding may occur along the many ephemeral washes within the

44 proposed SEZ with potential for channel incision and sedimentation. Temporary ponding may

45 occur in the low drainage areas near Palen Lake and Ford Dry Lake.

FIGURE 9.4.9.1-1 Surface Water Features near the Western Half of the Proposed Riverside East SEZ

FIGURE 9.4.9.1-2 Surface Water Features near the Eastern Half of the Proposed Riverside East SEZ

Several small to large wetlands were identified in the western and central portions of the
SEZ, according to the NWI (USFWS 2009). The largest wetland area is the lacustrine wetland
that surrounds Palen Lake (Figure 9.4.9.1-1), which is intermittently flooded with unconsolidated
shore sediments. Further information regarding the small wetlands near the proposed SEZ is
given in Section 9.4.10.1.

7 8

9

9.4.9.1.2 Groundwater

10 The proposed Riverside East SEZ is located within two groundwater basins: Chuckwalla Valley and Palo Verde Mesa. The divide between these two groundwater basins is a surface 11 12 drainage divide between the McCoy Mountains and the Mule Mountains, as well as a buried 13 bedrock ridge located below the primary water-bearing aquifer (Wilson and Owen-Joyce 1994; CDWR 2003, groundwater basin numbers 7-5 and 7-39), so there are no restrictive structures 14 15 between the two groundwater basins. The principal aquifer consists of alluvium and 16 fanglomerate deposits on top of a metamorphic bedrock basement complex (CDWR 2003). The Ouaternary age alluvium sediments consist of alluvial fan and river deposits of fine to coarse 17 18 sands intermixed with layers of gravel, silt, and clay sediments. The late Tertiary age 19 fanglomerate deposits are a part of the Bouse Formation consisting of alluvial fan and marine 20 deposits of limestone interbedded with clays, silt and sand (Wilson and Owen-Joyce 1994). The 21 total thickness of the principal aquifer is on the order of 1,200 ft (366 m) (CDWR 2003), and the 22 alluvium layer thickness is on the order of 100 to 150 ft (30 to 46 m) in the region of the SEZ 23 (Metzger et al. 1973).

24

25 Groundwater recharge in the Chuckwalla Valley is by subsurface underflow and from direct infiltration of precipitation runoff. Subsurface underflow is from the Pinto Valley and 26 27 Cadiz Valley groundwater basins to the west of the Chuckwalla Valley. The natural groundwater 28 flow pattern is from west to east across the Chuckwalla Valley toward the Colorado River. 29 Estimates of natural recharge have not been quantified in the Chuckwalla Valley. Natural 30 recharge is estimated to be 800 ac-ft/yr (987,000 m³/yr) in the neighboring Palo Verde Mesa and 31 the Cadiz Valley, which have similar climate and precipitation conditions (CDWR 2003). 32 Recharge from precipitation runoff is not suspected to be significant given the limited 33 precipitation in the region (Metzger et al. 1973). Discharge in the Chuckwalla Valley is primarily 34 by evapotranspiration at Palen Lake and subsurface underflow to the Palo Verde Mesa; the evapotranspiration rate at Palen Lake is unknown, and the subsurface underflow is estimated to 35 be 400 ac-ft/yr (493,000 m³/yr) to Palo Verde Mesa (CDWR 2003). Groundwater withdrawal 36 37 rates were 9,100 ac-ft/yr (11.2 million m^3/yr) in 1966 (CDWR 2003), and between 4,400 and 38 5,700 ac-ft/yr (5.4 million and 7.0 million m^3/yr) during dry and wet years occurring in the 39 period 1998 to 2001 (CDWR 2005). The majority of groundwater withdrawals in the region of 40 the proposed SEZ are for agricultural and domestic uses.

41

42 Groundwater surface elevations are routinely monitored in the Chuckwalla Valley and

43 Palo Verde Mesa as a part of the methodology used to determine groundwater that is

44 replenished by Colorado River water, as outlined in the 2006 consolidated decree of the

45 U.S. Supreme Court (*Arizona v. California* 2006) (see Section 9.4.9.1.3 for further information).

46 Depth to groundwater ranges between 80 and 270 ft (24 and 82 m) below the surface across

1 the Chuckwalla Valley and into the Palo Verde Mesa (USGS 2010b). Groundwater surface

2 elevations have remained steady for several decades (USGS 2010c, monitoring wells

3 334438115211101, 333939114411501). Groundwater well yields average 1,800 gpm

4 (6,814 L/min) with a maximum of 3,900 gpm (14,760 L/min) in the Chuckwalla Valley.

5 However, the majority of the groundwater extractions are clustered on the western and eastern 6 edges of the valley around Desert Center and the Palo Verde Mesa. It is suspected that further

redges of the valley around Desert Center and the Palo Verde Mesa. It is suspected that furthe
 groundwater development in this region may lead to declines in groundwater elevations

8 (Metzger et al. 1973; Steinemann 1989). Transmissivity values for the principal aquifer have

9 been reported to range from 13 to 94,000 ft²/day (1.2 to 8,733 m²/day) (Metzger et al. 1973).

10

11 TDS concentrations range from 274 to 12,300 mg/L in the Chuckwalla Valley and from 12 730 to 4,500 mg/L in the Palo Verde Mesa (CDWR 2003). The best water quality, in terms of 13 low TDS values, comes from the western portion of the Chuckwalla Valley around Desert Center, where the average TDS is 2,100 mg/L; TDS values increase as the groundwater flows 14 eastward towards the Colorado River (Steinemann 1989). In the region of Palen Lake, TDS 15 16 values range between 2,960 and 4,370 mg/L (CDWR 2003). Additional concerns relating to groundwater quality are high concentrations of arsenic, selenium, fluoride, chloride, boron, 17 18 sulfate, and TDS, which impair its use for domestic and agricultural applications in certain areas 19 of the Chuckwalla Valley and Palo Verde Mesa (CDWR 2003).

20

21 22

22 23

9.4.9.1.3 Water Use and Water Rights Management

24 In 2005, water withdrawals from surface waters and groundwater in Riverside County 25 were 1.4 million ac-ft/yr (1.7 billion m³/yr), of which 74% came from surface waters and 26% from groundwater. The largest water use category was municipal and domestic supply, at 26 27 519,000 ac-ft/yr (640 million m^3/yr). However, the majority of this water is used in the larger cities located in the western portion of Riverside County. Agricultural water uses accounted for 28 29 874,000 ac-ft/yr (1.1 billion m³/yr), and industrial water uses on the order of 7,000 ac-ft/yr 30 (8.6 million m^3/yr) (Kenny et al. 2009). The primary water use in the eastern portion of 31 Riverside County relevant to the proposed Riverside East SEZ is for agriculture, representing 32 59% to 77% of total groundwater withdrawals during the dry and wet years, respectively, in the 33 period 1998 to 2001 (CDWR 2005).

34

35 To manage water resources, California uses a "plural" system, which consists of a mixture of riparian and prior appropriation doctrines for surface waters, a separate doctrine 36 37 for groundwater, and pueblo rights (BLM 2001). Several agencies are involved with the 38 management of California's water resources, including federal, state, local, and water/irrigation 39 districts. For example, water rights and water quality are managed by the State Water Board, 40 while the CDWR manages water conveyance, infrastructure, and flood management (CDWR 2009). Surface water appropriations for nonriparian rights begin with a permit 41 42 application to the State Water Board and a review process that examines the application's 43 beneficial use, pollution potential, and water quantity availability; the permitting, review, and 44 licensing procedure should not take more than 6 months to complete unless the application is 45 protested (BLM 2001).

1	Groundwater management in California is primarily implemented at the local level of					
2	government through local agencies or ordinances; it can also be subject to court adjudications.					
3	State statute provides authority and revenue mechanisms to several types of local agencies to					
4	provide water for beneficial uses, as well as to manage withdrawals in order to prevent					
5	overdraft ² of the aquifers. Local ordinances (typically at the county level) can also be used to					
6	manage groundwater resources and have been adopted in 27 counties in California. Many of					
7	these local groundwater ordinances are focused on controlling water exports out of the basin					
8	through permitting processes. Court adjudications are the strongest form of groundwater					
9	management used in California and often result in the creation of a court-appointed					
10	"watermaster" agency to manage withdrawals for all users to ensure that the court-determined					
11	safe yield ³ is maintained (CDWR 2003).					
12						
13	The most significant water management issue relating to the proposed Riverside East					
14	SEZ is the assemblage of compacts, federal laws, court decrees, and contracts that form the "Law					
15	of the River," which pertains to the management of the Colorado River. The key aspects of the					
16	Law of the River relevant to the proposed SEZ are as follows (BOR 2008):					
17						
18	• 1922 Colorado River Compact, which defines the Upper and Lower Colorado					
19	River Basins and allots to each basin 7.5 million ac-ft/yr (9.3 billion m^3/yr)					
20	for beneficial use;					
21						
22	• 1928 Boulder Canyon Project Act, which grants California 4.4 million ac-ft/yr					
23	(9.3 billion m ³ /yr) of the lower Colorado River Basin's allotment;					
24						
25	 1931 California Seven Party Agreement, which prioritizes California's 					
26	allotment among local water management entities; and					
27						
28	 1964 U.S. Supreme Court decision, along with the Consolidation Decree of 					
29	2006, which provides a single reference to the 1964 decision (Arizona v.					
30	California 2006).					
31						
32	In accordance with the Law of the River, the USGS developed a method for identifying					
33	groundwater wells outside of the Colorado River's floodplain, where groundwater is replenished					
34	by Colorado River water. This method is known as the Accounting Surface, and it establishes a					
35	surface of static groundwater elevations, below which water is accounted for as Colorado River					
36	water and above which water is accounted for as local tributary replenished water (Wilson and					
37	Owen-Joyce 1994; Wiele et al. 2008). Groundwater below the Accounting Surface is subject to					
38	water management by the Law of the River, which is administered by the BOR (Wilson and					
39	Owen-Joyce 1994), and water above the Accounting Surface is subject to water management by					
40	state and local entities.					

² Groundwater overdraft is the condition in which water extractions from an aquifer exceed recharge processes in such excess as to cause substantial and sustained decreases in groundwater flows and groundwater elevations.

³ Safe yield is the amount of groundwater that can be withdrawn from a groundwater basin over a period of time without exceeding the long-term recharge of the basin or unreasonably affecting the basin's physical and chemical integrity.

1 The Colorado River Accounting Surface is at an elevation between 238 and 240 ft 2 (72.5 and 73 m) for most of the Chuckwalla Valley and Palo Verde Mesa area 3 (Wiele et al. 2008). From west to east across the Chuckwalla Valley and into the Palo Verde 4 Mesa, static groundwater elevations are approximately 488 ft (149 m) near Desert Center, 288 ft 5 (88 m) near Palen Lake, and 245 ft (75 m) near the split between the two groundwater basins 6 (USGS 2010b). Groundwater above the Accounting Surface is subject to State of California 7 laws, because there are no local management entities in this area. Landowners in California may 8 withdraw groundwater for beneficial use without approval from the State Water Board in regions 9 where no local-level management or court adjudication takes precedence, so long as their use 10 does not impair the availability of neighboring water rights (CDWR 2010a). 11

12 Approximately 3% of the proposed SEZ is located in the boundaries of the Palo Verde 13 Irrigation District (PVID) along the very eastern edge of the SEZ. The PVID manages water rights for the Palo Verde Valley and portions of the Palo Verde Mesa. The PVID shares a 14 priority right to develop up to 3.85 million ac-ft/yr (4.75 billion m^3/yr) with the Yuma Project 15 16 and the Imperial Irrigation District according to the California Seven Party Agreement of 1931. 17 The majority of the consumptive use of water in the Palo Verde Valley is irrigation with water 18 supplied by surface water diversions, and any groundwater development on the Palo Verde Mesa 19 in the PVID boundaries would have to make prior arrangements with the PVID. Additionally, the 20 MWD has an indirect stake regarding consumptive water use in the PVID boundaries, because in 21 2004 the MWD and PVID started a 35-year agreement in 2004 for land fallowing within the PVID boundaries in order to supply MWD with Colorado River water (MWD 2007). 22

- 23
- 24

Water management issues pertaining to the CRA are described in Section 9.2.9.1.3.

25 26 27

28

9.4.9.2 Impacts

29 Potential impacts on water resources related to utility-scale solar energy development 30 include direct and indirect impacts on surface waters and groundwater. Direct impacts occur at 31 the place of origin and at the time of the proposed activity, while indirect impacts occur away 32 from the place of origin or later in time. Impacts on water resources considered in this analysis 33 are the result of land disturbance activities (construction, final developed site plan, as well as off-34 site activities such as road and transmission line construction) and water use requirements for solar energy technologies that take place during the four project phases: site characterization, 35 36 construction, operations, and decommissioning/reclamation. Both land disturbance and consumptive water use activities can affect groundwater and surface water flows, cause 37 38 drawdown of groundwater surface elevations, modify natural drainage pathways, obstruct natural 39 recharge zones, and alter surface water-wetland-groundwater connectivity. Water quality also 40 can be degraded through the generation of wastewater, chemical spills, increased erosion and sedimentation, and increased salinity (e.g., by the excessive withdrawal from aquifers). 41 42 43

9.4.9.2.1 Land Disturbance Impacts on Water Resources

3 Impacts related to land disturbance activities are common to all utility-scale solar energy 4 facilities and are described in more detail for the four phases of development in Section 5.9.1; 5 these impacts will be minimized through the implementation of programmatic design features 6 described in Appendix A. Section A.2.2. In addition to the hydrologic evaluation (including 7 identifying 100-year floodplains and jurisdictional waters) described in the design features, 8 coordination and permitting with the CDFG would be needed for any proposed alterations of 9 surface water features (both perennial and ephemeral) in accordance with the Lake and 10 Streambed Alteration Program (CDFG 2010a). Siting of solar energy facilities near Palen Lake and Ford Dry Lake (Figure 9.4.9.1-1) could disrupt the natural drainage patterns to these 11 12 receiving bodies, resulting in erosion and sedimentation issues. Additional concerns of land 13 disturbance in the vicinity of Palen Lake are associated with the surrounding wetland habitat and 14 groundwater recharge/discharge process, which could be adversely affected by alterations to 15 natural drainage patterns. The McCoy Wash represents a significant surface drainage across the 16 eastern portion of the SEZ (Figure 9.4.9.1-2) and a large portion of its watershed is suspected to be within a 100-year floodplain according to CDWR awareness floodplain maps 17 18 (CDWR 2010b). Several smaller washes feed this incised channel, so land disturbance in the 19 vicinity of McCoy Wash should be minimized in order to prevent further channel incision, 20 erosion, and sedimentation impacts. 21 22 23 9.4.9.2.2 Water Use Requirements for Solar Energy Technologies 24 25 26 **Analysis Assumptions** 27 28 A detailed description of the water use assumptions for the four utility-scale solar energy 29 technologies (parabolic trough, power tower, dish engine, and PV systems) is presented in 30 Appendix M. Assumptions regarding water use calculations specific to the proposed Riverside 31 East SEZ are as follows: 32 33 On the basis of a total area of greater than 30,000 acres (121 km²), it is • 34 assumed that three solar projects would be constructed during the peak 35 construction year; 36 37 Water needed for making concrete would come from an off-site source; • 38 39 The maximum land disturbance for an individual solar facility during the peak • construction year is assumed to be $3,000 \text{ acres} (12 \text{ km}^2)$; 40 41 42 Assumptions on individual facility size and land requirements (Appendix M), 43 along with the assumed number of projects and maximum allowable land 44 disturbance, result in the potential to disturb up to 4% of the total area of the 45 proposed SEZ; 46

1
> 11 12

> 13

14 15 16

1

- Water use requirements for hybrid cooling systems are assumed to be on the same order of magnitude as those using dry cooling (see Section 5.9.2.1); and
- Water from the CRA is assumed to be unavailable to solar energy facilities (see Section 9.2.9.1.3 and Section 9.2.9.2.2 for further details).

Site Characterization

During site characterization, water would be used mainly for controlling fugitive dust and supplying potable water for the workforce. Impacts on water resources during this phase of development are expected to be negligible, because activities would be limited in area, extent, and duration; water needs could be met by trucking water in from an off-site source.

Construction

17 18 During construction, water would be used mainly for fugitive dust control and the 19 workforce potable water supply. Because there are no perennial surface water bodies on the 20 proposed Riverside East SEZ, the water requirements for construction activities could be met by 21 either trucking water to the sites or by using on-site groundwater resources. TDS levels in 22 groundwater used for a potable supply must be less than 1,500 mg/L and are recommended to be 23 less than 500 mg/L to meet secondary maximum contaminant levels (California Code Title 22, 24 Article 16, Section 64449). Given the potential for nonpotable TDS values in groundwater of the 25 Chuckwalla Valley and the Palo Verde Mesa, workforce water supplies may have to be brought 26 in from off-site.

Water requirements for dust suppression and potable water supply during construction, shown in Table 9.4.9.2-1, could be as high as 6,813 ac-ft (8.4 million m³). Groundwater wells would have to yield an estimated 2,896 to 4,221 gpm (10,963 to 15,978 L/min) to meet the estimated construction water requirements. These yields are on the order of large municipal and agriculture production wells (Harter 2003), so multiple wells may be needed to obtain the water requirements. In addition, up to 222 ac-ft (273,800 m³) of sanitary wastewater generated would need to be treated either on-site or sent to an off-site facility.

35 36

27

The total water use requirements for the peak construction year, listed in Table 9.4.9.2-1, 37 are on the same order of magnitude as the current groundwater withdrawals in the Chuckwalla 38 Valley, as described in Section 9.4.9.1.2. Under the current conditions of groundwater 39 extractions, groundwater surface elevations have remained steady over time. Groundwater 40 withdrawals for solar energy development during the peak construction year could essentially double the current groundwater withdrawal rate for the region, which would likely cause 41 42 drawdown of groundwater surface elevations and potentially lead to land subsidence issues. 43 Further characterization of the aquifer properties, including pumping tests, would need to be 44 performed during the site characterization phase to better determine the storage capacity and 45 safe yield of the aquifer.

46

Activity	Parabolic Trough	Power Tower	Dish Engine	PV
Water use requirements ^a				
Fugitive dust control (ac-ft) ^{b,c}	4,452	6,678	6,678	6,678
Potable supply for workforce (ac-ft)	222	135	56	28
Total water use requirements (ac-ft)	4,674	6,813	6,734	6,706
Wastewater generated				
Sanitary wastewater (ac-ft)	222	135	56	28

TABLE 9.4.9.2-1 Estimated Water Requirements during the Peak Construction Year for the Proposed Riverside East SEZ

^a Assumptions of water use for fugitive dust control, potable supply for workforce, and wastewater generation are presented in Appendix M.

^b Fugitive dust control estimation assumes a local pan evaporation rate of 130 in./yr (330 cm/yr) (Cowherd et al. 1988; WRCC 2010a).

^c To convert ac-ft to m³, multiply by 1,234.

Operations

5 During operations, water would be required for mirror/panel washing, the workforce 6 potable water supply, and cooling (parabolic trough and power tower only) (Table 9.4.9.2-2). 7 Water needs for cooling are a function of the type of cooling used (dry, wet, hybrid). Further 8 refinements to water requirements for cooling would result from the percentage of operational 9 time for the option employed (30% to 60% range assumed) and the power of the system. The 10 differences between the water requirements reported in Table 9.4.9.2-2 for the parabolic trough 11 and power tower technologies are attributable to the assumptions of acreage per megawatt. As a 12 result, the water usage for the more energy-dense parabolic trough technology is estimated to be 13 almost twice as large as that for power tower technology.

14

1 2 3

4

15 At full build-out capacity, water needs for mirror/panel washing are estimated to range from 902 to 16,232 ac-ft/vr (1.1 million to 20.0 million m^3/vr) and for the workforce potable 16 17 water supply, from 20 to 455 ac-ft/yr (24,700 to 561,200 m³/yr). As mentioned previously, TDS 18 values in a potable water supply must be lower than 1,500 mg/L for short durations and less than 19 500 mg/L for prolonged use to meet California drinking water standards (California Code, 20 Title 22, Article 16, Section 64449). Because of the high TDS concentrations that exist near the 21 SEZ, water treatment may be required for the workforce potable water supply. The maximum 22 total water usage during operation at full build-out capacity is estimated to be greatest for those 23 technologies using the wet-cooling option, as high as 487,406 ac-ft/yr (601 million m³/yr). 24 Water usage for dry-cooling systems would be as high as 49,150 ac-ft/yr (60.6 million m^3/yr), 25 approximately a factor of 10 times less than that for the wet-cooling option. Noncooled technologies, dish engine and PV systems, require substantially less water at full build-out 26 27 capacity at 9,220 ac-ft/yr (11.4 million m³/yr) and 922 ac-ft/yr (1.1 million m³/yr), respectively 28 (Table 9.4.9.2-2). Operations would produce up to 455 ac-ft/yr (561,200 m³/yr) of sanitary

TABLE 9.4.9.2-2Estimated Water Requirements during Operations at Full Build-OutCapacity at the Proposed Riverside East SEZ

Activity	Parabolic Trough	Power Tower	Dish Engine	PV
Full build-out capacity (MW) ^{a,b}	32,463	18,035	18,035	18,035
Water use requirements				
Mirror/panel washing (ac-ft/vr) ^{c,d}	16.232	9.018	9.018	902
Potable supply for workforce (ac-ft/yr)	455	202	202	20
Dry-cooling (ac-ft/yr) ^e	6,493-32,463	3,607-18,035	NA ^f	NA
Wet-cooling (ac-ft/yr) ^e	146,085–470,719	81,158–261,510	NA	NA
Total water use requirements				
Noncooled technologies (ac-ft/yr)	NA	NA	9,220	922
Dry-cooled technologies (ac-ft/yr)	23,180-49,150	12,827-27,255	NA	NA
Wet-cooled technologies (ac-ft/yr)	162,772–487,406	90,378-270,730	NA	NA
Wastewater generated				
Blowdown (ac-ft/yr) ^g	9,222	5,123	NA	NA
Sanitary wastewater (ac-ft/yr)	455	202	202	20

^a Land area for parabolic trough was estimated at 5 acres/MW (0.02 km²/MW); land area for power tower, dish engine, and PV technologies was estimated at 9 acres/MW (0.04 km²/MW).

^b Water needs are linearly related to power. Water usage for any other size project can be estimated by using multipliers provided in Table M.9-2 (Appendix M).

- ^c Value assumes a usage rate of 0.5 ac-ft/yr/MW for mirror washing for parabolic trough, power tower, and dish engine technologies and a rate of 0.05 ac-ft/yr/MW for panel washing for PV systems.
- ^d To convert ac-ft to m^3 , multiply by 1,234.
- ^e Dry-cooling value assumes 0.2 to 1.0 ac ft/yr per MW and wet-cooling value assumes 4.5 to 14.5 ac ft/yr per MW (range in these values represents 30 and 60% operating times) (DOE 2009).
- f NA = not applicable.
- ^g Value scaled from 250-MW Beacon Solar project with an annual discharge of 44 gpm (167 L/min) (AECOM 2009c). Blowdown estimates are relevant to wet cooling only.

1 2

wastewater. In addition, for wet-cooled technologies, 5,123 to 9,222 ac-ft/yr (6.3 million to
11.4 million m³/yr) of cooling system blowdown water would need to be treated either on- or
off-site. Any on-site treatment of wastewater would have to ensure that treatment ponds are
effectively lined in order to prevent any groundwater contamination.

Groundwater is the primary water resource available for solar energy development at the
proposed Riverside East SEZ. The current estimates of recharge and discharge processes in the
Chuckwalla Valley and Palo Verde Mesa groundwater basin suggest that the groundwater
aquifer is near a condition of equilibrium, as indicated by steady groundwater surface elevations
and little development in the Chuckwalla Valley. The highest groundwater extraction rate in the
Chuckwalla Valley was reported to be 9,100 ac-ft/yr (11.2 million m³/yr) in 1966. Based on the

1 limited information on groundwater aquifer characteristics, this groundwater extraction rate 2 serves as an estimate of the maximum groundwater withdrawal rate that would likely not induce 3 drawdown of groundwater surface elevations. However, further characterization of the 4 groundwater resources in the Chuckwalla Valley is needed in order to fully quantify the safe 5 yield of groundwater from this basin. Using the maximum historical groundwater withdrawal as 6 a guide for assessing available water resources, only dish engine and PV systems would be 7 feasible for the full build-out scenario of the proposed Riverside East SEZ. Power tower 8 technologies at the lower operational times (30%) may be feasible as well. Technologies using 9 wet-cooling have water requirement estimates that are a factor of 10 to 80 times greater than the 10 maximum historical groundwater extraction rate for the region. Wet-cooled facilities would most likely cause significant drawdown of the groundwater surface elevations, so the use of wet-11 12 cooling technologies is not feasible for the proposed Riverside East SEZ. 13 14 The drawdown of groundwater surface elevations can generate impacts on the natural

hydrology, as well as on ecosystem processes. Additional constraints affecting the region of the 15 16 proposed Riverside East SEZ are the issues relating to the Colorado River Accounting Surface and the laws and management practices associated with the Law of the River, as described in 17 18 Section 9.4.9.1.3. Current groundwater levels are on the order of 240 ft (73 m) above the 19 Accounting Surface near Desert Center, but these levels above the Accounting Surface quickly 20 drop to about 40 ft (12 m) near Palen Lake and 5 ft (1.5 m) near the Palo Verde Mesa. 21 Groundwater below the Colorado River Accounting Surface is not available for solar energy 22 development, because it is accounted for as Colorado River water, which is fully allocated by the 23 treaties, compacts, and court decisions that make up the Law of the River.

24 25

26

27

Decommissioning/Reclamation

During decommissioning/reclamation, all surface structures associated with the solar project would be dismantled, and the site reclaimed to its preconstruction state. Activities and water needs during this phase would be similar to those during the construction phase (dust suppression and workforce potable supply) and may also include water to establish vegetation in some areas. However, the total volume of water needed is expected to be less. Because quantities of water needed during the decommissioning/reclamation phase would be less than those for construction, impacts on surface and groundwater resources also would be less.

- 35
- 36
- 37 38

9.4.9.2.3 Off-Site Impacts: Roads and Transmission Lines

39 Impacts associated with the construction of roads and transmission lines primarily deal 40 with water use demands for construction, water quality concerns relating to potential chemical 41 spills, and land disturbance effects on the natural hydrology. The proposed Riverside East SEZ is 42 located adjacent to existing roads and transmission lines, as described in Section 9.4.1.2, so it is 43 assumed that no additional construction outside of the SEZ would be required and there would 44 be no impacts.

45 46 1 2

9.4.9.2.4 Summary of Impacts on Water Resources

3 The impacts on water resources associated with developing solar energy at the proposed 4 Riverside East SEZ are associated with land disturbance effects on the natural hydrology, water 5 quality concerns, and water use requirements for the various solar energy technologies. Land 6 disturbance activities can cause localized erosion and sedimentation issues, as well as alter 7 groundwater recharge and discharge processes. The impacts of land disturbance are of particular 8 concern in the areas near Palen Lake, Ford Dry Lake, and the McCoy Wash. Palen Lake is a 9 drainage outlet for several washes coming off the Coxcomb Mountains and the Palen Mountains, 10 as well as a significant groundwater discharge point with shallow groundwater levels supporting wetland vegetation. Ford Dry Lake is a drainage outlet for washes coming off the Palen 11 12 Mountains and the McCoy Mountains. McCoy Wash is a large, incised drainage that conveys 13 significant flows during rainfall events, and much of its watershed is located within a suspected 14 100-year floodplain. Water quality concerns specific to the proposed SEZ deal with contamination of groundwater through surface spills and with potable water supplies meeting 15 16 California drinking water standards, for which TDS values exceed standards in certain areas of

17 the SEZ.

18

19 Impacts from water use requirements vary depending on the type of solar technology 20 built and, for technologies using cooling systems, the type of cooling (wet, dry, or hybrid) used. Groundwater is the primary water resource available to solar energy facilities in the proposed 21 22 Riverside East SEZ; however, aquifer characteristics and the region's safe yield are not fully 23 quantified. The estimates of groundwater recharge, discharge, and underflow from adjacent 24 basins and historical data on groundwater extractions and groundwater surface elevations suggest 25 that there may not be groundwater available to support the water-intensive technologies, such as 26 those using wet cooling. An additional constraint on groundwater development in the proposed 27 Riverside East SEZ is the water rights issue related to the Colorado River Accounting Surface, 28 which defines a groundwater elevation below which the groundwater is accounted for as fully 29 allocated Colorado River water.

30

31 The estimated values of water requirements for the solar energy technologies are a 32 function of the full build-out capacity of the proposed SEZ. Full build-out of the large area of the 33 proposed Riverside East SEZ has the theoretical potential to generate 18,035 to 32,463 MW, but 34 would require very large water supplies for water-intensive technologies (Table 9.4.9.2-2). For 35 the purpose of evaluating a more realistic build-out scenario reflecting the available water 36 supplies, an estimate of the maximum power capacity for each technology was made assuming a value for available groundwater resources in the Chuckwalla Valley. The maximum historical 37 38 groundwater withdrawal rate was 9,100 ac-ft/yr (11.2 million m³/yr) in 1966, which did not 39 result in significant overdraft conditions. Using this historical withdrawal rate as an estimate of the available groundwater resources, wet-cooling technologies could potentially support 2 to 40 10% of the full build-out power capacity, while dry cooling could potentially support only 19 to 41 42 71%. This analysis of the potential power production capacity based on limited water resources 43 should serve as an estimate only. Further characterization of the groundwater safe-yield for the 44 Chuckwalla Valley and Palo Verde Mesa basins would be needed prior to the evaluation of 45 impacts associated with project-specific groundwater withdrawals. Additionally, any proposed 46 project-specific groundwater withdrawals will need to be analyzed with respect to drawdown

1 effects and the Colorado River Accounting Surface. While there is limited information on 2 groundwater resources at the proposed Riverside East SEZ, this analysis suggests that wet-3 cooling technologies would be unfeasible and that substantial water conservation strategies 4 would be needed for dry cooled and dish engine. The relatively small quantities of water 5 estimated to support PV systems for the full build-out scenario suggest that this would be the 6 preferred technology for large-scale solar energy production at the proposed Riverside East SEZ. 7 8 9 9.4.9.3 SEZ-Specific Design Features and Design Feature Effectiveness 10 11 The program for solar energy development on BLM-administered lands will require the 12 programmatic design features given in Appendix A, Section A.2.2, to be implemented, thus 13 mitigating some impacts on water resources. Programmatic design features would focus on 14 coordinating with federal, state, and local agencies that regulate the use of water resources to meet the requirements of permits and approvals needed to obtain water for development, and 15 16 conducting hydrological studies to characterize the aquifer from which groundwater would be obtained (including drawdown effects, if a new point of diversion is created). The greatest 17 18 consideration for mitigating water impacts would be in the selection of solar technologies. The 19 mitigation of impacts would be best achieved by selecting technologies with low water demands. 20 21 Proposed design features specific to the proposed Riverside East SEZ are as follows: 22 23 Wet-cooling options would not be feasible; other technologies should • 24 incorporate water conservation measures. 25 26 Land disturbance activities should avoid impacts to the extent possible near ٠ 27 the regions surrounding Palen Lake, Ford Dry Lake, and McCoy Wash. 28 29 During site characterization, hydrologic investigations would need to identify ٠ 30 100-year floodplains and potential jurisdictional water bodies subject to Clean 31 Water Act Section 404 permitting. Siting of solar facilities and construction 32 activities should avoid areas identified as within a 100-year floodplain. 33 34 During site characterization, coordination and permitting with CDFG 35 regarding California's Lake and Streambed Alteration Program would be 36 required for any proposed alterations to surface water features (both perennial 37 and ephemeral). 38 39 Groundwater withdrawals should comply with rules and regulations set forth ٠ by the PVID for the portions of the SEZ located within PVID boundaries. 40 41 42 The use of groundwater in the Chuckwalla Valley and Palo Verde Mesa 43 should be planned for and monitored in cooperation with the BOR and the 44 USGS in reference to the Colorado River Accounting Surface and the rules set 45 forth in the Law of the River. 46

1 2 3 4	• Groundwater monitoring and production wells should be constructed in accordance with standards set forth by the State of California (CDWR 1991) and Riverside County.
5 6 7	• Stormwater management plans and BMPs should comply with standards developed by the California Stormwater Quality Association (CASQA 2003).
8 9 10 11	• Water for potable uses would have to meet or be treated to meet water quality standards in the California Safe Drinking Water Act (<i>California Health and Safety Code</i> , Chapter 4).

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	<i>This page intentionally left blank.</i>
14	
15	

9.4.10 Vegetation

1

2

3 This section addresses vegetation that could occur or is known to occur within the 4 potentially affected area of the proposed Riverside East SEZ. The affected area considered in this 5 assessment includes the areas of direct and indirect effects. The area of direct effects was defined 6 as the area that would be physically modified during project development (i.e., where ground-7 disturbing activities would occur) and included only the SEZ. The area of indirect effects was 8 defined as the area within 5 mi (8 km) of the SEZ boundary where ground-disturbing activities 9 would not occur but that could be indirectly affected by activities in the area of direct effect. No 10 area of direct or indirect effects was assumed for new transmission lines or access roads because they are not expected to be needed for facilities on the proposed Riverside East SEZ due to the 11 12 proximity of an existing transmission line and state highway. 13

Indirect effects considered in the assessment included effects from surface runoff, dust, and accidental spills from the SEZ, but do not include ground-disturbing activities. The potential degree of impacts from indirect effects would decrease with increasing distance from the SEZ. This area of indirect effect was identified on the basis of professional judgment and was considered sufficiently large to bound the area that would potentially be subject to indirect effects. The affected area is the area bounded by the areas of direct and indirect effects. These areas are defined and the impact assessment approach is described in Appendix M.

9.4.10.1 Affected Environment

25 The proposed Riverside East SEZ is located in a transitional area that includes many 26 species associated with the Mojave and Sonoran Deserts. Most of the SEZ is located within the 27 Sonoran Basin and Range Level III ecoregion (EPA 2007), which supports creosotebush (Larrea 28 tridentata)-white bur sage (Ambrosia dumosa) plant communities with large areas of palo verde 29 (Cercidium microphyllum)-cactus shrub and saguaro cactus (Carnegiea gigantea) communities 30 (EPA 2002). The dominant species of the Lower Colorado River Valley subdivision of the 31 Sonoran Desert are primarily creosotebush, white bursage, and all-scale (Atriplex polycarpa), 32 with big galleta (*Pleuraphis rigida*), Palmer alkali heath (*Frankenia palmeri*), brittlebush 33 (Encelia farinosa), and western honey mesquite (Prosopis glandulosa var. torreyana) dominant 34 in some areas (Turner and Brown 1994). Larger drainageways and washes support species of 35 small trees and shrubs that may also occur in adjacent areas, such as western honey mesquite, 36 ironwood (Olneya tesota), and blue palo verde (Cercidium floridum), as well as species such as 37 smoketree (Psorothamnus spinosa), which are mostly restricted to drainageways. Shrub species 38 found in minor drainages include cat-claw acacia (Acacia greggii), burrobrush (Hymenoclea 39 salsola var. pentalepis), Anderson thornbush (Lycium andersonii), and desert broom (Baccharis 40 sarothroides). Annual precipitation in the Sonoran Desert occurs in winter and summer (Turner and Brown 1994) and is very low in the area of the SEZ, averaging about 3.5 in. 41 42 (89.7 mm) at the Blythe Airport (see Section 9.4.13).

43

22 23

24

The western portion of the SEZ lies within the Mojave Basin and Range Level III
ecoregion, which is characterized by broad basins and scattered mountains. The boundary
between the Sonoran and Mojave Deserts represents a transitional area that includes many

1 species associated with both deserts. Communities of sparse, scattered shrubs and grasses 2 including creosotebush, white bursage (Ambrosia dumosa), and big galleta grass (Pleuraphis 3 rigida) occur in basins; Joshua tree (Yucca brevifolia), other Yucca species, and cacti occur on 4 arid footslopes; woodland and shrubland communities occur on mountain slopes, ridges, and 5 hills (Bryce et al. 2003). Creosote bush, all-scale (Atriplex polycarpa), brittlebush (Encelia 6 farinosa), desert holly (Atriplex hymenelvtra), white burrobrush (Hymenoclea salsola), shadscale 7 (Atriplex confertifolia), blackbrush (Coleogyne ramosissima), and Joshua tree (Yucca brevifolia) 8 are dominant species within the Mojave desertscrub biome (Turner 1994). 9 10 Land cover types described and mapped under CAReGAP (NatureServe 2010) were used to evaluate plant communities in and near the SEZ. Each cover type encompasses a range of 11 12 similar plant communities. Land cover types that occur within the potentially affected area of the 13 proposed Riverside East SEZ are shown in Figure 9.4.10.1-1. Table 9.4.10.1-1 provides the 14 surface area of each cover type within the potentially affected area. 15 16 Lands within the Riverside East SEZ are classified primarily as Sonora-Mojave Creosotebush-White Bursage Desert Scrub. Additional cover types within the SEZ are given 17 18 in Table 9.4.10.2-1. Creosotebush was observed to be the dominant species over much of the 19 SEZ in August 2009; associated shrubs included brittlebush, white burrobrush, and desert holly. 20 Western honey mesquite occurs in sand dune areas. Biological soil crusts are present in some 21 areas. Characteristic Sonoran Desert species observed on the SEZ include ironwood, western 22 honey mesquite, smoketree, and blue palo verde. Cacti species observed within the SEZ were 23 barrel cactus (Ferocactus cylindraceus) and cholla (Opuntia sp.). Community types present on the SEZ that are considered sensitive by the California Resources Agency (BLM 2002a,b) 24 25 include desert dry wash woodlands, desert chenopod scrub/mixed salt desert scrub, sand dune communities, and playa communities. Plant communities that are dependent on groundwater 26 include mesquite bosque and bush seep-weed (Suaeda moquinii) communities (BLM and 27 28 CEC 2010b), both primarily associated with Palen Lake, located in the western portion of the 29 SEZ, where groundwater is relatively shallow (see Section 9.4.9). 30 31 The area surrounding the SEZ, within 5 mi (8 km), includes 16 cover types, which are 32 listed in Table 9.4.10.1-1. The predominant cover types are Sonora-Mojave Creosotebush-White 33 Bursage Desert Scrub, North American Warm Desert Volcanic Rockland, and North American 34 Warm Desert Bedrock Cliff and Outcrop. 35 36 Wetlands mapped by the NWI that occur within the proposed Riverside East SEZ and 37 within the 5-mi (8-km) area of indirect effects are shown in Figure 9.4.10.1-2 and summarized 38 in Table 9.4.10.1-2. NWI maps are produced from high-altitude imagery and are subject to 39 uncertainties inherent in image interpretation (USFWS 2009). Thirty-seven wetlands are located 40 entirely or in part within the SEZ, primarily in the central and western portions of the SEZ, with a total of 3,807 acres (15.4 km²) occurring within the boundaries of the SEZ. These wetlands are 41 42 all intermittently flooded, indicating that surface water is usually absent but may be present for 43 variable periods. Six wetlands are classified as lacustrine unconsolidated shore wetlands, with a total of 3,517 acres (14.2 km²) mapped within the SEZ. Unconsolidated shore wetlands have a 44

45 sparse vegetation cover. The lacustrine wetlands are primarily associated with Palen Lake and

FIGURE 9.4.10.1-1 Land Cover Types within the Proposed Riverside East SEZ (Source: NatureServe 2010)

	Area of Cover Typ	be Affected (acres) ^b	
Land Cover Type ^a	Within SEZ ^c (Direct Effects)	Outside SEZ ^d (Indirect Effects)	Overall Impact Magnitude ^e
5264 Sonora-Mojave Creosotebush-White Bursage Desert Scrub: Occurs in broad valleys, lower bajadas, plains, and low hills in the Mojave and Sonoran Deserts. Shrubs form a sparse to moderately dense cover (2–50%), although the ground surface may be mostly barren. The dominant species are typically creosotebush (<i>Larrea tridentata</i>) and white bursage (<i>Ambrosia dumosa</i>). Other shrubs, dwarf-shrubs, and cacti may also be dominant or form sparse understories. Herbaceous species are typically sparse, but may be seasonally abundant.	109,933 acres ^f (5.0%, 8.0%)	229,999 acres (10.4%)	Moderate
3180 North American Warm Desert Volcanic Rockland: Consists of barren and sparsely vegetated (<10% plant cover) areas. Vegetation is variable and typically includes scattered desert shrubs.	29,579 acres (8.5%, 10.4%)	135,364 acres (38.8%)	Moderate
3121 North American Warm Desert Active and Stabilized Dune: Consists of unvegetated to sparsely vegetated (generally <10% plant cover) active dunes and sand sheets. Vegetation includes shrubs, forbs, and grasses. Includes unvegetated "blowouts" and stabilized areas.	26,798 acres (31.8%, 41.6%)	15,987 acres (19.0%)	Large
9151 North American Warm Desert Wash: Consists of intermittently flooded linear or braided strips within desert scrub or grassland landscapes on bajadas, mesas, plains, and basin floors. Although often dry, washes are associated with rapid sheet and gully flow. The vegetation varies from sparse and patchy to moderately dense and typically occurs along the banks, but may occur within the channel. Shrubs and small trees are typically intermittent to open. Common upland shrubs often occur along the edges.	24,976 acres (3.9%, 6.8%)	79,324 acres (12.4%)	Moderate
3120 North American Warm Desert Bedrock Cliff and Outcrop: Occurs on subalpine to foothill steep cliff faces, narrow canyons, rock outcrops, unstable scree, and talus slopes. Consists of barren and sparsely vegetated areas (generally <10% plant cover) with desert species, especially succulents. Lichens are predominant in some areas.	5,640 acres (0.6%, 1.0%)	115,696 acres (12.2%)	Small

TABLE 9.4.10.1-1 Land Cover Types within the Potentially Affected Area of the Proposed Riverside East SEZ and Potential Impacts

	Area of Cover Type Affected (acres) ^b		_
Land Cover Type ^a	Within SEZ ^c (Direct Effects)	Outside SEZ ^d (Indirect Effects)	Overall Impact Magnitude ^e
3143 North American Warm Desert Pavement: Consists of unvegetated to very sparsely vegetated (<2% plant cover) areas, usually in flat basins, with ground surfaces of fine to medium gravel coated with "desert varnish." Desert scrub species are usually present. Herbaceous species may be abundant in response to seasonal precipitation.	1,588 acres (4.3%, 9.1%)	9,797 acres (26.6%)	Moderate
3161 North American Warm Desert Playa: Consists of barren and sparsely vegetated areas (generally <10% plant cover) that are intermittently flooded; salt crusts are common. Sparse shrubs occur around the margins, and patches of grass may form in depressions. In large playas, vegetation forms rings in response to salinity. Herbaceous species may be periodically abundant.	1,570 acres (2.3%, 2.7%)	828 acres (1.2%)	Moderate
5265 Sonora-Mojave Mixed Salt Desert Scrub: Extensive open-canopied shrublands in the Mojave and Sonoran Deserts, usually occurring around playas and in valley bottoms or basins with saline soils. Vegetation is typically composed of one or more <i>Atriplex</i> species; other salt-tolerant plants are often present or even co-dominant. Grasses occur at varying densities.	1,563 acres (2.8%, 7.2%)	5,103 acres (9.1%)	Moderate
21, 22 Developed, Open Space—Low Intensity: Includes housing, parks, golf courses, and other areas planted in developed settings. Impervious surfaces compose up to 49% of the total land cover.	898 acres (2.5%, 8.6%)	9,243 acres (26.2%)	Moderate
9178 North American Warm Desert Riparian Mesquite Bosque: Occurs along perennial and intermittent streams as relatively dense riparian corridors composed of trees and shrubs. Honey mesquite (<i>Prosopis glandulosa</i>) and velvet mesquite (<i>P. velutina</i>) are the dominant trees. Vegetation is supported by groundwater when surface water is absent.	223 acres (2.5%, 13.3%)	8 acres (0.1%)	Moderate
23, 24 Developed, Medium-High Density: Includes housing and commercial/industrial development. Impervious surfaces compose 50–100% of the total land cover.	67 acres (0.9%, 6.0%)	649 acres (9.1%)	Small
81, 82 Hay/Pasture, Cultivated Crops: Areas where pasture/hay or cultivated crops account for more than 20% of total vegetation cover.	54 acres (<0.1%, 0.6%)	49,248 acres (10.1%)	Small

	Area of Cover Type Affected (acres) ^b		-
Land Cover Type ^a	Within SEZ ^c (Direct Effects)	Outside SEZ ^d (Indirect Effects)	Overall Impact Magnitude ^e
3139 Inter-Mountain Basins Shale Badland: Typically occurs on rounded hills and plains. Consists of barren and sparsely vegetated areas (<10% plant cover) with high rate of erosion and deposition. Vegetation consists of sparse dwarf shrubs and herbaceous plants.	23 acres (0.2%, 0.4%)	3,335 acres (22.7%)	Small
9182 North American Warm Desert Riparian Woodland and Shrubland: Occurs along medium to large perennial streams in canyons and desert valleys. Consists of a mix of riparian woodlands and shrublands. Vegetation is dependent upon annual or periodic flooding, along with substrate scouring, and/or a seasonally shallow water table.	0 acres	326 acres (1.2%)	Small
5259 Mojave Mid-Elevation Mixed Desert Scrub: Vegetation composition is quite variable. Dominant species include shrubs forbs, and grasses and may include <i>Yucca</i> spp.	0 acres	248 acres (2.2%)	Small
11 Open Water: Plant or soil cover is generally less than 25%.	0 acres	101 acres (0.4%)	Small

^a Land cover descriptions are from NatureServe (2010). Full descriptions of land cover types, including plant species, can be found in Appendix J.

^b Area in acres, determined from Sanborn Mapping (2008).

^c Includes the area of the cover type within the SEZ, the percentage that area represents of all occurrences of that cover type within the SEZ region (i.e., a 50-mi [80-km] radius from the center of the SEZ), and the percentage that area represents of all occurrences of that cover type on BLM lands within the SEZ region. The SEZ region intersects portions of California and Arizona. However, the SEZ and affected area occur only in California.

^d Area of indirect effects was assumed to be the area adjacent to the SEZ within 5 mi (8 km) of the SEZ boundary where ground-disturbing activities would not occur. Indirect effects include effects from surface runoff, dust, and other factors from project facilities. The potential degree of indirect effects would decrease with increasing distance from the SEZ. Includes the area of the cover type within the indirect effects area and the percentage that area represents of all occurrences of that cover type within the SEZ region.

^e Overall impact magnitude categories were based on professional judgment and include (1) *small*: a relatively small proportion (\leq 1%) of the cover type within the SEZ region would be lost; (2) *moderate*: an intermediate proportion (>1 but \leq 10%) of a cover type would be lost; and (3) *large*: >10% of a cover type would be lost.

 $^{\rm f}$ To convert acres to km², multiply by 0.004047.

FIGURE 9.4.10.1-2 Wetlands within the Proposed Riverside East SEZ (Source: USFWS 2009)

Wetland Type and Size Range	Area within SEZ	Number/Total Wetland Area/ Area within SEZ
Lacustrine, unconsolidated shore 23–8,178 acres ^a	23–2,214 acres	6/9,860 acres/3,517 acres
Palustrine, emergent 0.2–14 acres	0.2-14 acres (100%)	10/32 acres/32 acres
Palustrine, scrub shrub 1–117 acres	1–117 acres	8/124 acres/124 acres
Palustrine, unconsolidated shore 0.3–10 acres	0.3–10 acres	10/38 acres/38 acres
Riverine, unconsolidated shore 5–717 acres	5–53 acres	3/774 acres/96 acres

TABLE 9.4.10.1-2 Wetlands of the Proposed Riverside East SEZ

^a To convert acres to km², multiply by 0.004047.

Source: USFWS (2009).

1 2

3 Ford Dry Lake, which is located in the central portion of the SEZ. Ten wetlands are classified as 4 palustrine wetlands with emergent plant communities, with a total of 32 acres (0.1 km^2) mapped 5 within the SEZ. Emergent plant communities are composed primarily of herbaceous species 6 rooted in shallow water or saturated soil. Eight wetlands are classified as palustrine wetlands 7 with scrub shrub plant communities, with a total of 124 acres (0.5 km²) mapped within the SEZ. 8 Scrub shrub plant communities are composed primarily of short woody species, although 9 herbaceous species may also be present. Ten wetlands are classified as palustrine unconsolidated shore wetlands, with a total of 38 acres (0.2 km^2) mapped within the SEZ. Three wetlands are 10 11 classified as riverine unconsolidated shore wetlands, with a total of 96 acres (0.4 km^2) mapped 12 within the SEZ. Desert dry washes in the SEZ support microphyll woodlands that include 13 ironwood, smoketree, and blue palo verde. An ironwood forest, identified by BLM as a Unique 14 Plant Assemblage, occurs in the upper reaches of McCoy Wash. Numerous vegetated and 15 unvegetated ephemeral washes occur within the SEZ, as well as washes and swales that support communities of creosotebush and big galleta grass (Pleuraphis rigida) (BLM and CEC 2010a-16 17 c). These dry washes typically contain water for short periods during or following precipitation events and include temporarily flooded areas. Ephemeral washes provide surface flows to 18 19 downstream habitats including playas. One-hundred-thirteen wetlands are located within the 20 indirect impact area. These include lacustrine unconsolidated shore, palustrine emergent, 21 palustrine scrub shrub, palustrine unconsolidated shore, palustrine unconsolidated bottom, and 22 palustrine and riverine unconsolidated shore wetlands. 23

The proposed Riverside East SEZ is located within the Low Desert Weed Management Area (LDWMA). Table 9.4.10.1-3 provides a list of weed species of the California Sonoran

TABLE 9.4.10.1-3Weed Species of theCalifornia Sonoran Desert Region

Common Name	Scientific Name
Barbwire Russian thistle	Salsola paulsenii
Bermudagrass	Cynodon dactylon
Camelthorn	Alhagi maurorum
Common Russian thistle	Salsola tragus
Field bindweed	Convolvulus arvensis
Giant reed	Arundo donax
Giant salvinia	Salvinia auriculata
Hydrilla	Hydrilla verticillata
Scarlet wisteria	Sesbania punicea
Tamarisk	Tamarix ramosissima
Tocalote	Centaurea melitensis
White horsenettle	Solanum elaeagnifolium

Source: CDFA (2010).

2 3 Desert Region, which includes the LDWMA. Invasive species known to occur within the SEZ 4 include tamarisk, which occurs along wet areas, Sahara mustard (Brassica tournefortii), 5 cheatgrass (Bromus tectorum), Russian thistle (Salsola sp.), Mediterranean grass (Schismus 6 arabicus, S. barbatus), and red brome (Bromus madritensis ssp. rubens) (BLM and 7 CEC 2010a-c). 8 9 10 9.4.10.2 Impacts 11

12 The construction of solar energy facilities within the Riverside East SEZ would result 13 in direct impacts on plant communities because of the removal of vegetation within the facility footprint during land-clearing and land-grading operations. Approximately 80% of the SEZ 14 15 (162,345 acres [657 km²]) would be expected to be cleared with full development of the SEZ. 16 The plant communities affected would depend on facility locations and could include any of the 17 communities that occur on the SEZ. Therefore, for the purposes of this analysis, all the area of each cover type within the SEZ is considered to be directly affected by removal with full 18 19 development of the SEZ.

20

1

Indirect effects (caused, for example, by surface runoff or dust from the SEZ) have the potential to degrade affected plant communities and may reduce biodiversity by promoting the decline or elimination of species sensitive to disturbance. Indirect effects can also cause an increase in disturbance-tolerant species or invasive species. High impact levels could result in the elimination of a community or the replacement of one community type by another. The proper implementation of programmatic design features, however, would reduce indirect effects to a minor or small level of impact.

28

Possible impacts from solar energy facilities on vegetation encountered within the SEZ, as well as general mitigation measures, are described in more detail in Section 5.10.5. Any such impacts will be minimized through the implementation of required programmatic design features described in Appendix A, Section A.2.2, and through additional SEZ-specific design features given in Section 9.4.10.3.

9.4.10.2.1 Impacts on Native Species

10 The impacts of construction, operation, and decommissioning were considered small if 11 the impact affected a relatively small proportion (<1%) of the cover type in the SEZ region 12 (within 50 mi [80 km] of the center of the SEZ); a moderate impact (>1 but <10%) could affect 13 an intermediate proportion of cover type; a large impact could affect greater than 10% of a cover 14 type.

15

7 8

9

16 Solar facility construction and operation would primarily affect communities of the Sonora-Mojave Creosotebush-White Bursage Desert Scrub cover type. Additional cover types 17 18 within the SEZ that would be affected include North American Warm Desert Volcanic Rockland, 19 North American Warm Desert Active and Stabilized Dune, North American Warm Desert Wash, 20 North American Warm Desert Bedrock Cliff and Outcrop, North American Warm Desert 21 Pavement, North American Warm Desert Playa, Sonora-Mojave Mixed Salt Desert Scrub, 22 North American Warm Desert Riparian Mesquite Bosque, and Inter-Mountain Basins Shale 23 Badland. Although Hay/Pasture, Cultivated Crops, Developed, Open Space-Low Intensity, and Developed, Medium-High Density cover types occur within the SEZ, these areas likely support 24 25 few native plant communities. Table 9.4.10.1-1 summarizes the potential impacts on native species cover types that would result from solar energy facilities in the proposed Riverside East 26 27 SEZ. Many of these cover types are relatively common in the SEZ region; however, several are 28 relatively uncommon, representing less than 1% of the land area within the SEZ region: North 29 American Warm Desert Pavement (0.7%), Inter-Mountain Basins Shale Badland (0.3%), and 30 North American Warm Desert Riparian Mesquite Bosque (0.2%). 31

32 The construction, operation, and decommissioning of solar projects within the SEZ 33 would result in large impacts on North American Warm Desert Active and Stabilized Dune and 34 moderate impacts on Sonora-Mojave Creosotebush-White Bursage Desert Scrub, North 35 American Warm Desert Volcanic Rockland, North American Warm Desert Wash, North 36 American Warm Desert Pavement, North American Warm Desert Playa, Sonora-Mojave Mixed 37 Salt Desert Scrub, Developed, Open Space-Low Intensity, and North American Warm Desert 38 Riparian Mesquite Bosque. Most of the playa cover type is associated with Ford Dry Lake. Solar 39 project development within the SEZ would result in small impacts on the remaining cover types 40 in the affected area. Sand dune, playa, desert chenopod scrub/mixed salt desert scrub (primarily associated with Ford Dry Lake), desert ephemeral dry wash communities, and dry wash 41 42 microphyll woodlands are important sensitive habitats in the region. 43

Disturbance of vegetation in dune communities within the SEZ, such as from heavy
 equipment operation, could result in the loss of substrate stabilization. Re-establishment of dune
 species could be difficult due to the arid conditions and unstable substrates. Because of the arid

1 conditions, reestablishment of desert scrub or other communities in temporarily disturbed areas 2 would likely be very difficult and might require extended periods of time. In addition, noxious 3 weeds could become established in disturbed areas and colonize adjacent undisturbed habitats. 4 thus reducing restoration success and potentially resulting in widespread habitat degradation. 5 Cryptogamic soil crusts occur in many of the shrubland communities in the region and likely 6 occur on the SEZ. Damage to these crusts, by the operation of heavy equipment or other 7 vehicles, can alter important soil characteristics, such as nutrient cycling and availability, and 8 affect plant community characteristics (Lovich and Bainbridge 1999). 9 10 The deposition of fugitive dust from disturbed soil areas in habitats outside a solar project area could result in reduced productivity or changes in plant community composition. Fugitive 11 12 dust deposition could affect plant communities of each of the cover types occurring within the 13 indirect impact area identified in Table 9.4.10.1-1.

15 Potential impacts on wetlands as a result of solar energy facility development are 16 described in Section 5.6.1. Specific to the affected area of the proposed Riverside East SEZ, approximately 3,807 acres (15.4 km²) of wetland habitat occurs within the SEZ and could be 17 18 affected by project development.

19 20 Grading could result in direct impacts on the wetlands within the SEZ if fill material is 21 placed within wetland areas. Grading near the wetlands in or near the SEZ could disrupt surface 22 water or groundwater flow characteristics, resulting in changes in the frequency, duration, depth, 23 or extent of inundation or soil saturation, and could potentially alter wetland plant communities 24 and affect wetland function adjacent to or downgradient from solar projects. Increases in surface runoff from a solar energy project site could also affect wetland hydrologic characteristics. The 25 introduction of contaminants into wetlands in or near the SEZ could result from spills of fuels or 26 27 other materials used on a project site. Soil disturbance could result in sedimentation in wetland 28 areas, which could degrade or eliminate wetland plant communities. Sedimentation effects or 29 hydrologic changes could also extend to wetlands outside of the SEZ. Grading could also affect 30 dry washes within the SEZ, and alteration of surface drainage patterns or hydrology could adversely affect downstream dry wash, playa, or chenopod scrub communities. Vegetation 31 within these communities could be lost by erosion or desiccation. See Section 9.4.9 for further 32 33 discussion of impacts on washes and playas.

34 35

14

Although the use of groundwater within the Riverside East SEZ for technologies with 36 high water requirements, such as wet-cooling systems, is considered unlikely, groundwater 37 withdrawals for such systems could reduce groundwater discharge along riparian areas. 38 Reductions in groundwater discharges at springs and seeps that support riparian habitats could 39 result in degradation of these habitats. Communities that depend on accessible groundwater, such 40 as mesquite bosque or bush seep-weed communities, could become degraded or lost as a result of lowered groundwater levels (BLM and CEC 2010b). 41

- 42 43
- 44

9.4.10.2.2 Impacts from Noxious Weeds and Invasive Plant Species

3 On February 8, 1999, the President signed E.O. 13112, "Invasive Species," which directs 4 federal agencies to prevent the introduction of invasive species and provide for their control and 5 to minimize the economic, ecological, and human health impacts of invasive species (Federal 6 Register, Volume 64, page 61836, Feb. 8, 1999). Potential impacts of noxious weeds and 7 invasive plant species resulting from solar energy facilities are described in Section 5.10.1. 8 Despite required programmatic design features to prevent the spread of noxious weeds, project 9 disturbance could potentially increase the prevalence of noxious weeds and invasive species in 10 the affected area of the proposed Riverside East SEZ, such that weeds could be transported into areas that were previously relatively weed-free, which could result in reduced restoration success 11 12 and possible widespread habitat degradation.

Invasive species, including tamarisk, Sahara mustard, cheatgrass, Russian thistle,
 Mediterranean grass, and red brome, occur on the SEZ. Weed species known to occur in the
 Sonoran Desert Region are given in Table 9.4.10.1-3.

17

13

1

2

18 Past or present land uses may affect the susceptibility of plant communities to the 19 establishment of noxious weeds and invasive species. Small areas of Developed, Open Space-Low Intensity, totaling about 898 acres (3.6 km²), occur within the SEZ, and approximately 20 21 9.243 acres (37.4 km²) occur in the indirect impact area; about 67 acres (0.3 km²) of Developed. 22 Medium-High Density occur within the SEZ and 649 acres (2.6 km²) occur within the indirect 23 impact area. The developed areas likely support few native plant communities. Because 24 disturbance may promote the establishment and spread of invasive species, developed areas may 25 provide sources of such species. Existing roads, transmission lines, and recreational OHV use within the SEZ area of potential impact also likely contribute to the susceptibility of plant 26 27 communities to the establishment and spread of noxious weeds and invasive species. 28

20

30 31

9.4.10.3 SEZ-Specific Design Features and Design Feature Effectiveness

In addition to programmatic design features, SEZ-specific design features would reduce the potential for impacts on plant communities. While some SEZ-specific design features are best established when project details are considered, some design features can be identified at this time, as follows.

36 37

38

39

40

41

42

43

44

• An Integrated Vegetation Management Plan, addressing invasive species control, and an Ecological Resources Mitigation and Monitoring Plan, addressing habitat restoration and management, should be approved and implemented to increase the potential for successful restoration of creosotebush-white bursage desert scrub communities and other affected habitats and minimize the potential for the spread of tamarisk, Sahara mustard, cheatgrass, or other invasive species. Invasive species control should focus on biological and mechanical methods where possible to reduce the use of herbicides.

1 2 3 4 5 6 7	•	All wetland, riparian, playa, dry wash (including dry wash microphyll woodland), sand dune and sand transport areas, and chenopod scrub habitats within the SEZ should be avoided to the extent practicable, and any impacts minimized and mitigated. A buffer area should be maintained around wetland, riparian, playa, and dry wash communities to reduce the potential for impacts on these communities on or near the SEZ.
8	•	Appropriate engineering controls should be used to minimize impacts on
9		wetland, riparian, playa, dry wash woodland, and chenopod scrub, including
10		downstream occurrences, resulting from surface water runoff, erosion,
11		sedimentation, altered hydrology, accidental spills, or fugitive dust deposition
12		to these habitats. Appropriate buffers and engineering controls would be
13		determined through agency consultation.
14		
15	•	Groundwater withdrawals should be limited to reduce the potential for indirect
16		impacts on riparian habitat that is associated with groundwater discharge or
17		groundwater-dependent communities, such as mesquite bosque or bush seep-
18		weed communities.
19		
20	Ift	these SEZ-specific design features are implemented in addition to programmatic design
21	features, i	t is anticipated that a high potential for impacts from invasive species and potential
22	impacts or	n wetland, riparian, playa, dry wash (including dry wash microphyll woodland), sand
23	dune, and	chenopod scrub habitats would be reduced to a minimal potential for impact.
24		
25		
26		

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	This page intentionally left blank.
14	
15	

9.4.11 Wildlife and Aquatic Biota

3 This section addresses wildlife (amphibians, reptiles, birds, and mammals) and aquatic 4 biota that could occur within the potentially affected area of the proposed Riverside East SEZ. 5 Wildlife known to occur within 50 mi (80 km) of the SEZ (i.e., the SEZ region) was determined 6 from the California Wildlife Habitat Relationships System (CDFG 2008). Land cover types 7 suitable for each species were determined from SWReGAP (USGS 2004, 2005, 2007). The 8 amount of aquatic habitat within the SEZ region was determined by estimating the length of 9 linear perennial stream and canal features and the area of standing water body features 10 (i.e., ponds, lakes, and reservoirs) within 50 mi (80 km) of the SEZ with available GIS surface water data sets. 11

12

1

2

13 The affected area considered in this assessment included the areas of direct and indirect 14 effects. The area of direct effects was defined as the area that would be physically modified during project development (i.e., where ground-disturbing activities would occur within the 15 16 SEZ). The area of indirect effects was defined as the area within 5 mi (8 km) of the SEZ 17 boundary, where ground-disturbing activities would not occur but that could be indirectly 18 affected by activities in the area of direct effects (e.g., surface runoff, dust, noise, lighting, and 19 accidental spills from the SEZ). The potential degree of indirect effects would decrease with 20 increasing distance from the SEZ. This area of indirect effects was identified on the basis of 21 professional judgment and was considered sufficiently large to bound the area that would 22 potentially be subject to indirect effects.

23

The affected area is the area bounded by the areas of direct and indirect effects. These areas are defined and the impact assessment approach is described in Appendix M. No area of direct or indirect effects was assumed for a new transmission line or access road, because of the proximity of existing transmission lines and roads to the SEZ.

28

29 Dominant vegetation in the affected area is desertscrub, and the primary land cover 30 habitat type within the affected area is Sonora-Mojave creosotebush-white bursage desertscrub 31 (see Section 9.4.10). Potentially unique habitats in the affected area in which wildlife species 32 may reside include desert dunes, cliffs and rock outcrops, volcanic rocklands, desert washes, and 33 playa wetland habitats. Playa wetland habitats in the affected area include Ford Dry Lake and 34 Palen Lake as well as the CRA. Palen Lake is located in the western portion of the SEZ; Ford Lake is in the center of the SEZ. The CRA is located along the western border of the SEZ 35 (Figure 9.4.12.1-1). There are also a number of desert washes on the SEZ that may provide 36 37 habitat for unique plant assemblages.

38 39

40

9.4.11.1 Amphibians and Reptiles

- 41 42
- 43 44

9.4.11.1.1 Affected Environment

This section addresses amphibian and reptile species that are known to occur, or for which potentially suitable habitat occurs, on or within the potentially affected area of the proposed Riverside East SEZ. The list of amphibian and reptile species potentially present in the
project area was determined from range maps and habitat information available from CWHRS
(CDFG 2008). Land cover types suitable for each species were determined from SWReGAP
(USGS 2004, 2005, 2007). See Appendix M for additional information on the approach used.
Based on the range, habitat preferences, and/or presence of potentially suitable land
cover for the amphibian species that occur within southeastern California (CDFG 2008;

8 USGS 2004, 2005, 2007), the Couch's spadefoot (Scaphiopus couchii) and red-spotted 9 toad (Bufo punctatus) would be expected to occur within the proposed Riverside East SEZ. The 10 most likely areas for these species to occur within the SEZ are in the area of Ford Dry Lake (near the center of the SEZ) and Palen Lake (in the western portion of the SEZ). Several other 11 12 amphibian species could inhabit the CRA along the western boundary of the SEZ. These species 13 include the bullfrog (Rana catesbeiana), Colorado River toad (Bufo alvarius), Rio Grande 14 leopard frog (Rana berlandieri), and Woodhouse's toad (Bufo woodhousii). Because these species tend to occur within 300 ft (100 m) of permanent water (USGS 2007), they would not be 15 16 expected to occur with any regularity in the SEZ.

17

18 Thirty-one reptile species could occur within the Riverside East SEZ (CDFG 2008): 19 one tortoise, 13 lizard, and 17 snake species. The desert tortoise (*Gopherus agassizii*) is a federal 20 and state-listed threatened species. This species is discussed in Section 9.4.12. Among the more 21 common lizard species that could occur within the SEZ are the desert horned lizard (*Phrynosoma* 22 *platyrhinos*), long-nosed leopard lizard (*Gambelia wislizenii*), Mojave fringe-toed lizard (*Uma* 23 *scoparia*), side-blotched lizard (*Uta stansburiana*), western banded gecko (*Coleonyx variegatus*), 24 and zebra-tailed lizard (*Callisaurus draconoides*). 25

The most common snake species expected to occur within the Riverside East SEZ are the
coachwhip (*Masticophis flagellum*), glossy snake (*Arizona elegans*), gophersnake (*Pituophis catenifer*), groundsnake (*Sonora semiannulata*), and long-nosed snake (*Rhinocheilus lecontei*).
The Mojave rattlesnake (*Crotalus scutulatus*) and sidewinder (*C. cerastes*) would be the most
common poisonous snake species expected to occur on the SEZ.

Table 9.4.11.1-1 provides habitat information for the amphibian and reptile species that could occur on or in the affected area of the proposed Riverside East SEZ.

34 35

36

31

9.4.11.1.2 Impacts

37 38 The potential for impacts on amphibians and reptiles from utility-scale solar energy 39 development within the proposed Riverside East SEZ is presented in this section. The types of 40 impacts that amphibians and reptiles could incur from construction, operation, and decommissioning of utility-scale solar energy facilities are discussed in Section 5.10.2.1. Any 41 42 such impacts would be minimized through the implementation of required programmatic design 43 features described in Appendix A, Section A.2.2, and the application of any additional mitigation. Section 9.4.11.1.3, below, identifies SEZ-specific design features of particular 44 45 relevance to the Riverside East SEZ. 46

TABLE 9.4.11.1-1Representative Amphibians and Reptiles That Could Occur on or in the Affected Area of the Proposed RiversideEast SEZ and Potential Impacts

	Maximum Area of Potential Habitat Affected ^a		Overall Impact Magnitude ^d and	
Common Name (Scientific Name)	Habitat	Within SEZ (Direct Effects) ^b	Outside SEZ	Species-Specific Mitigation ^e
			(indirect Effects)	
Amphibians Couch's spadefoot (Scaphiopus couchii)	Desert washes, desert riparian, palm oasis, desert succulent shrub, and desert scrub habitats. Requires pools or potholes with water that lasts longer than 10 to 12 days for breeding sites. About 2,225,100 acres ^f of potentially suitable habitat occurs in the SEZ region.	110,156 acres of potentially suitable habitat lost (5.0% of available potentially suitable habitat)	230,007 acres of potentially suitable habitat (10.3% of available potentially suitable habitat)	Moderate. Avoid development in Ford Dry Lake and Palen Lake.
Red-spotted toad (<i>Bufo punctatus</i>)	Rocky canyons and gullies in deserts, grasslands, and dry woodlands. When inactive, it occurs under rocks, in rock crevices, or underground. Often found near rocky areas associated with spring seepages, intermittent streams, and cattle tanks. Breeds in shallow water of temporary rain pools, spring-fed pools, and pools along intermittent streams. About 2,522,400 acres of potentially suitable habitat occurs in the SEZ region.	111,496 acres of potentially suitable habitat lost (4.4% of available potentially suitable habitat)	235,350 acres of potentially suitable habitat (9.3% of available potentially suitable habitat)	Moderate. Avoid development in Ford Dry Lake and Palen Lake.
<i>Lizards</i> Desert horned lizard (<i>Phrynosoma</i> <i>platyrhinos</i>)	Deserts dominated by sagebrush, creosote bush, greasewood, or cactus. Occurs on sandy flats, alluvial fans, washes, and edges of dunes. Burrows in soil during periods of inactivity. Common throughout Mojave and Colorado Deserts. About 4,698,800 acres of potentially suitable habitat occurs in the SEZ region.	162,473 acres of potentially suitable habitat lost (3.5% of available potentially suitable habitat)	596,015 acres of potentially suitable habitat (12.7% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is widespread in the area of direct effects.

		Maximum Area of Potential Habitat Affected ^a		Overall Impact
Common Name (Scientific Name)	Habitat	Within SEZ (Direct Effects) ^b	Outside SEZ (Indirect Effects) ^c	Species-Specific Mitigation ^e
<i>Lizards (Cont.)</i> Long-nosed leopard lizard (<i>Gambelia</i> wislizenii)	Desert and semidesert areas with scattered shrubs. Prefers sandy or gravelly flats and plains. Also prefers areas with abundant rodent burrows, which it occupies when inactive. Widely distributed in the Mojave, Colorado, and other desert	111,496 acres of potentially suitable habitat lost (4.4% of available potentially	235,350 acres of potentially suitable habitat (9.3% of available potentially	Moderate
Mojave fringe- toed lizard (<i>Uma scoparia</i>)	areas in California. About 2,522,500 acres of potentially suitable habitat occurs in the SEZ region.Restricted to sparsely vegetated windblown sand of dunes, flats, riverbanks, and washes. Requires fine, loose sand for burrowing. About 2,303,800 acres of potentially suitable	suitable habitat) 136,731 acres of potentially suitable habitat lost (5.9% of	suitable habitat) 245,986 acres of potentially suitable habitat (10.7% of	Moderate
Cida klatakad	habitat occurs in the SEZ region.	available potentially suitable habitat)	available potentially suitable habitat)	Madamta
lizard (<i>Uta</i> <i>stansburiana</i>)	trees. Often occurs in sandy washes with scattered rocks and bushes. About 4,053,700 acres of potentially suitable habitat occurs in the SEZ region.	potentially suitable habitat lost (3.5% of available potentially suitable habitat)	425,267 acres of potentially suitable habitat (10.5% of available potentially suitable habitat)	Moderate
Western banded gecko (<i>Coleonyx</i> variegatus)	Wide variety of habitats including deserts with creosotebush and sagebrush and pinyon-juniper woodlands. Inhabits both rocky areas and barren dunes. Most abundant in sandy flats and desert washes. Uses rocks, burrows, and spaces beneath vegetative debris or trash during periods of inactivity. About 3,265,500 acres (of potentially suitable habitat occurs in the SEZ region.	138,265 acres of potentially suitable habitat lost (4.2% of available potentially suitable habitat)	315,836 acres of potentially suitable habitat (9.7% of available potentially suitable habitat)	Moderate

		Maximum Area of Potential Habitat Affected ^a		Overall Impact
Common Name (Scientific Name)	Habitat	Within SEZ (Direct Effects) ^b	Outside SEZ (Indirect Effects) ^c	Species-Specific Mitigation ^e
<i>Lizards (Cont.)</i> Zebra-tailed lizard (<i>Callisaurus</i> <i>draconoides</i>)	Sparsely vegetated deserts on open sandy washes, dunes, floodplains, beaches, or desert pavement. Common and widely distributed throughout Mojave and Colorado Deserts. About 3,734,800 acres of potentially suitable habitat occurs in the SEZ region.	162,473 acres of potentially suitable habitat lost (4.4% of available potentially suitable habitat)	476,984 acres of potentially suitable habitat (12.8% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is widespread in the area of direct effects.
Snakes Coachwhip (Masticophis flagellum)	Wide variety of open terrain habitats. Most abundant in deserts, grasslands, scrub, chaparral, and pastures. Prefers relatively dry open terrain. It seeks cover in burrows, rocks, or vegetation. About 3,488,700 acres of potentially suitable habitat occurs in the SEZ region.	142,371 acres of potentially suitable habitat lost (4.1% of available potentially suitable habitat)	361,682 acres of potentially suitable habitat (10.4% of available potentially suitable habitat)	Moderate
Glossy snake (Arizona elegans)	Variety of habitats including barren to sparsely shrubby deserts, sagebrush flats, grasslands, and sandhills. Prefers sandy areas with scattered brush, but also occurs in rocky areas. Shelters and lays eggs underground. Common throughout southern California, particularly the desert regions. About 3,186,500 acres of potentially suitable habitat occurs in the SEZ region.	161,930 acres of potentially suitable habitat lost (5.1% of available potentially suitable habitat)	325,318 acres of potentially suitable habitat (10.2% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is widespread in the area of direct effects.

Common Name		Maximum Area of Potential Habitat Affected ^a		Overall Impact Magnitude ^d and Species-Specific
(Scientific Name)	Habitat	(Direct Effects) ^b	(Indirect Effects) ^c	Mitigation ^e
Snakes (Cont.) Gophersnake (Pituophis catenifer)	Wide variety of habitats including deserts, prairies, shrublands, woodlands, and farmlands. May dig its burrow or occupy mammal burrows. Eggs are laid in burrows or under large rocks or logs. Most widespread and common snake in California. About 3,483,600 acres of potentially suitable habitat occurs in the SEZ region.	162,473 acres of potentially suitable habitat lost (4.7% of available potentially suitable habitat)	341,715 acres of potentially suitable habitat (9.8% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is widespread in the area of direct effects.
Groundsnake (Sonora semiannulata)	Arid and semiarid areas including desert flats, sand hummocks, and rocky hillsides with pockets of loose soil. Ranges from prairie and desert lowlands to pinyon-juniper and oak-pine zone. About 2,502,900 acres of potentially suitable habitat occurs in the SEZ region.	110,156 acres of potentially suitable habitat lost (4.4% of available potentially suitable habitat)	230,581 acres of potentially suitable habitat (9.2% of available potentially suitable habitat)	Moderate
Long-nosed snake (<i>Rhinocheilus</i> <i>lecontei</i>)	Typically inhabits deserts, dry prairies, and river valleys. Occurs by day and lays eggs underground or under rocks. Burrows rapidly in loose soil. Common in desert regions. About 997,700 acres of potentially suitable habitat occurs in the SEZ region.	51,997 acres of potentially suitable habitat lost (5.2% of available potentially suitable habitat)	95,645 acres of potentially suitable habitat (9.6% of available potentially suitable habitat)	Moderate
Mojave rattlesnake (Crotalus scutulatus)	Mostly upland desert and lower mountain slopes including barren desert, grasslands, open woodland, and scrubland. Generally avoids broken rocky terrain or densely vegetated areas. Takes refuge in animal burrows or spaces under or among rocks. Widely distributed throughout the Mojave and extreme northern Colorado Deserts. About 2,502,800 acres of potentially suitable habitat occurs in the SEZ region.	110,156 acres of potentially suitable habitat lost (4.4% of available potentially suitable habitat)	239,581 acres of potentially suitable habitat (9.2% of available potentially suitable habitat)	Moderate

Common Name (Scientific Name)	Habitat	Maximum Area of Po Within SEZ (Direct Effects) ^b	otential Habitat Affected ^a Outside SEZ (Indirect Effects) ^c	Overall Impact Magnitude ^d and Species-Specific Mitigation ^e
<i>Snakes (Cont.)</i> Sidewinder (<i>Crotalus.</i> <i>cerastes</i>)	Open desert terrain with fine windblown sand, desert flats with sandy washes, or sparsely vegetated sand dunes. Concentrates near washes and areas of relatively dense vegetation where mammal burrows are common. During periods of inactivity, uses underground burrows, occurs under bushes, or almost completely snuggles under sand. Widely distributed and locally abundant in the Mojave and Colorado Deserts. About 2,577,500 acres of potentially suitable habitat occurs in the SEZ region.	136,731 acres of potentially suitable habitat lost (5.3% of available potentially suitable habitat)	246,560 acres of potentially suitable habitat (9.6% of available potentially suitable habitat)	Moderate

^a Maximum area of potentially suitable habitat affected relative to total available potentially suitable habitat within the SEZ region (i.e., a 50-mi [80-km] radius from the center of the SEZ). Habitat availability was determined from potentially suitable land cover for each species (USGS 2004, 2005, 2007).

^b Direct effects within the SEZ consist of ground-disturbing activities associated with construction and the maintenance of an altered environment associated with operations. A maximum of 162,473 acres would be developed in the SEZ.

^c The area of indirect effects was assumed to be the area adjacent to the SEZ within 5 mi (8 km) of the SEZ boundary. Indirect effects include effects from surface runoff, dust, noise, lighting, etc., from the SEZ, but do not include ground-disturbing activities. The potential degree of indirect effects would decrease with increasing distance from the SEZ boundary.

^d Overall impact magnitude categories were based on professional judgment and were (1) *small*: $\leq 1\%$ of potentially suitable habitat for the species would be lost and the activity would not result in a measurable change in the carrying capacity or population size in the affected area; (2) *moderate*: >1 but $\leq 10\%$ of potentially suitable habitat for the species would be lost and the activity would potentially result in a measurable but moderate (not destabilizing) change in the carrying capacity or population size in the affected area; and (3) *large*: >10% of potentially suitable habitat for the species would be lost and the activity would result in a potentially large, measurable, and destabilizing change in the carrying capacity or population size in the affected area. Note that much greater weight was given to the magnitude of direct effects, because those effects would be difficult to mitigate. Programmatic design features would reduce most indirect effects to negligible levels.

Footnotes continued on next page.

- ^e Species-specific mitigation is presented for those species that have particular habitat features that could be readily avoided. For species or individuals occurring outside the SEZ (in the area of indirect effects), no mitigation measures beyond required programmatic design features have been identified.
- ^f To convert acres to km^2 , multiply by 0.004047.

Sources: CDFG (2008); NatureServe (2010); USGS (2004, 2005, 2007).

1

The assessment of impacts on amphibians and reptile species is based on available information on the presence of species in the affected area as presented in Section 9.4.11.1.1, following the analysis approach described in Appendix M. Additional NEPA assessments and coordination with state natural resource agencies may be needed to address project-specific impacts more thoroughly. These assessments and consultations could result in additional required actions to avoid or mitigate impacts on amphibians and reptiles (see Section 9.4.11.1.3).

8 In general, impacts on amphibians and reptiles would result from habitat disturbance 9 (i.e., habitat reduction, fragmentation, and alteration) and from disturbance, injury, or mortality 10 to individual amphibians and reptiles. Table 9.4.11.1-1 summarizes the potential impacts on representative amphibian and reptile species resulting from solar energy development that could 11 12 occur on or in the affected area in the proposed Riverside East SEZ. Direct impacts on 13 representative amphibian and reptile species would be moderate, because 3.5 to 5.9% of 14 potentially suitable habitats for the species in the SEZ region would be lost (Table 9.4.11.1-1). Larger areas of potentially suitable habitats for the amphibian and reptile species occur within 15 16 the area of potential indirect effects (e.g., up to 12.8% of available habitat for the zebra-tailed 17 lizard). Other impacts on amphibians and reptiles could result from surface water and sediment 18 runoff from disturbed areas, fugitive dust generated by project activities, accidental spills, 19 collection, and harassment. These indirect impacts are expected to be negligible with 20 implementation of programmatic design features.

21

Decommissioning of facilities and reclamation of disturbed areas after operations cease could result in short-term negative impacts on individuals and habitats adjacent to project areas, but long-term benefits would accrue if suitable habitats were restored in previously disturbed areas. Section 5.10.2.1.4 provides an overview of the impacts of decommissioning and reclamation on wildlife. Of particular importance for amphibian and reptile species would be the restoration of original ground surface contours, soils, and native plant communities associated with semiarid shrublands.

29 30

31

32

9.4.11.1.3 SEZ-Specific Design Features and Design Feature Effectiveness

33 The implementation of required programmatic design features described in Appendix A, 34 Section A.2.2, would reduce the potential for effects on amphibians and reptiles, especially for 35 species using habitat types that can be avoided (e.g., the ephemeral drainages, playa, dry lake, wetlands, and the CRA). Indirect impacts could be reduced to negligible levels by implementing 36 37 programmatic design features, especially those engineering controls that would reduce runoff, 38 sedimentation, spills, and fugitive dust. While SEZ-specific design features are best established 39 when project details are considered, design features that can be identified at this time include the 40 following: 41

41 42 43

44

45 46

47

• The potential for indirect impacts on several amphibian species could be reduced by maximizing the distance between solar energy development and the CRA.

• To the extent practicable, avoid ephemeral drainages, Palen Lake and Ford Dry Lake, and wetlands.

1 If these SEZ-specific design features are implemented in addition to other programmatic 2 design features, impacts on amphibian and reptile species could be reduced. However, because 3 potentially suitable habitats for a number of the amphibian and reptile species occur throughout 4 much of the SEZ, additional species-specific mitigation of direct effects for those species would 5 be difficult or infeasible. 6

9.4.11.2 Birds

9.4.11.2.1 Affected Environment

This section addresses bird species that are known to occur, or for which potentially suitable habitat occurs, on or within the potentially affected area of the proposed Riverside East SEZ. The list of bird species potentially present in the project area was determined from range maps and habitat information available from the California Wildlife Habitat Relationships System (CDFG 2008). Land cover types suitable for each species were determined from SWReGAP (USGS 2004, 2005, 2007). See Appendix M for additional information on the approach used.

20

7 8

9 10 11

12

More than 100 species of birds have a range that encompasses the proposed Riverside East SEZ region. However, habitats for about 40 of these species either do not occur on or are limited within the SEZ (e.g., habitat for waterfowl and wading birds). In addition, the SEZ region is only within the winter or summer range for some of the bird species. Eleven bird species that could occur on or in the affected area of the SEZ are considered focal species for the California

26 Partners in Flight's *Desert Bird Conservation Plan* (CalPIF 2009): ash-throated flycatcher

27 (Myiarchus cinerascens), black-tailed gnatcatcher (Polioptila melanura), black-throated sparrow

- 28 (Amphispiza bilineata), burrowing owl (Athene
- 29 *cunicularia*), common raven (*Corvus corax*),
- 30 Costa's hummingbird (*Calypte costae*), crissal
- 31 thrasher (*Toxostoma crissale*), ladder-backed
- 32 woodpecker (*Picoides scalaris*), Le Conte's
- 33 thrasher (*Toxostoma lecontei*), phainopepla
- 34 (*Phainopepla nitens*), and verdin (*Auriparus*
- 35 *flaviceps*). Habitats for most of these species
- are described in Table 9.4.11.2-1. The ash-

37 throated flycatcher would be a summer resident within the SEZ, while the other desert focal bird

- 38 species could occur year-round (CalPIF 2009).
- 39

40

41 42

Waterfowl, Wading Birds, and Shorebirds

As discussed in Section 4.10.2.2.2, waterfowl (ducks, geese, and swans), wading birds
(herons and cranes), and shorebirds (avocets, gulls, plovers, rails, sandpipers, stilts, and terns) are
among the most abundant groups of birds in the six-state study area. About 20 species of

46 waterfowl, wading birds, and shorebirds occur within the SEZ region for the proposed Riverside

Desert Focal Bird Species

Bird species whose requirements define spatial attributes, habitat characteristics, and management regimes representative of a healthy desert system (Chase and Geupel 2005).

TABLE 9.4.11.2-1 Representative Bird Species That Could Occur on or in the Affected Area of the Proposed Riverside East SEZ and Potential Impacts

Common Namo		Maximum Area of Potential Habitat Affected ^a		Overall Impact Magnitude ^d and
(Scientific Name)	Habitat and Seasonal Occurrence	(Direct Effects) ^b	(Indirect Effects) ^c	Mitigation ^e
<i>Shorebirds</i> Killdeer	Widespread throughout California. Open areas such as	2,535 acres of	10,821 acres of	Moderate. Avoid
(Charadrius vociferus)	fields, meadows, lawns, mudflats, and shores. Nests on ground in open dry or gravelly locations. About 231,000 acres ^f of potentially suitable habitat occurs in the SEZ region. Year-round.	potentially suitable habitat lost (1.1% of available potentially suitable habitat)	potentially suitable habitat (4.7% of available potentially suitable habitat)	development in Ford Dry Lake and Palen Lake. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.
Least sandpiper (<i>Calidris</i> minutilla)	Wet meadows, mudflats, flooded fields, lake shores, edge of salt marshes, and river sandbars. About 64,700 acres of potentially suitable habitat occurs in the SEZ region. Common to abundant in winter.	223 acres of potentially suitable habitat lost (0.3% of available potentially suitable habitat)	435 acres of potentially suitable habitat (0.7% of available potentially suitable habitat)	Small. Avoid development in Ford Dry Lake and Palen Lake. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.

		Maximum Area of Potential Habitat Affected ^a		Overall Impact Magnitude ^d and
Common Name	Habitat and Seasonal Occurrence	Within SEZ	Outside SEZ	Species-Specific Mitigation ^e
(Scientific Name)	Habitat and Seasonal Occurrence	(Direct Effects)	(Indirect Effects)	Miligation
Neotropical Migrants				
Ash-throated flycatcher (<i>Myiarchus</i> <i>cinerascens</i>)	Common in scrub and woodland habitats including desert riparian and desert washes. Requires hole/cavity for nesting. Uses shrubs or small trees for foraging perches. About 3,196,900 acres of potentially suitable habitat occurs in the SEZ region. Summer.	136,695 acres of potentially suitable habitat lost (4.3% of available potentially suitable habitat)	315,008 acres of potentially suitable habitat (9.9% of available potentially suitable habitat)	Moderate. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.
Black-tailed gnatcatcher (<i>Polioptila</i> <i>melanura</i>)	Nests in bushes mainly in wooded desert washes with dense mesquite, palo verde, ironwood, and acacia. Also occurs in desert scrub habitat. About 3,199,000 acres of potentially suitable habitat occurs in the SEZ region. Year- round.	161,930 acres of potentially suitable habitat lost (5.1% of available potentially suitable habitat)	325,318 acres of potentially suitable habitat (10.2% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is widespread in the area of direct effects. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.

Common Name	Habitat and Seasonal Occurrence	Maximum Area of Potential Habitat Affected ^a Within SEZ Outside SEZ		Overall Impact Magnitude ^d and Species-Specific Mitigation ^e
(Belentine Ivanie)	Habitat and Seasonal Occurrence	(Direct Effects)	(indirect Effects)	Wittgation
Neotropical Migrants (Cont.) Black-throated sparrow (Amphispiza bilineata)	Chaparral and desert scrub habitats with sparse to open stands of shrubs. Often in areas with scattered Joshua trees. Nests in thorny shrubs or cactus. About 2,960,000 acres of potentially suitable habitat occurs in the SEZ region. Year- round.	162,473 acres of potentially suitable habitat lost (5.5% of available potentially suitable habitat)	394,738 acres of potentially suitable habitat (13.3% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is wide-spread in the area of direct effects. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.
Brewer's sparrow (<i>Spizella</i> breweri)	Common in Mojave and Colorado Deserts during winter. Occupies open desert scrub and cropland habitats. About 2,305,900 acres of potentially suitable habitat occurs in the SEZ region.	111,544 acres of potentially suitable habitat lost (4.8% of available potentially suitable habitat)	243,705 acres of potentially suitable habitat (10.6% of available potentially suitable habitat)	Moderate. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.

		Maximum Area of Potential Habitat Affected ^a		Overall Impact Magnitude ^d and
Common Name		Within SEZ	Outside SEZ	Species-Specific
(Scientific Name)	Habitat and Seasonal Occurrence	(Direct Effects) ^b	(Indirect Effects) ^c	Mitigation ^e
Neotropical Migrants (Cont.)	Desert (especially areas with cholla cactus or vucca)	30.616 acres of	195 594 acres of	Moderate Some
(Campylorhynchus brunneicapillus)	mesquite, arid scrub, coastal sage scrub, and trees in towns in arid regions. Nests in <i>Opuntia</i> spp.; twiggy, thorny trees and shrubs; and sometimes in buildings. Nests may be used as winter roost. Locally common in the Mojave and Colorado Deserts. About 1,865,100 acres of potentially suitable habitat occurs in the SEZ region. Year-round.	potentially suitable habitat lost (1.6% of available potentially suitable habitat)	potentially suitable habitat (10.5% of available potentially suitable habitat)	measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.
Common poorwill (<i>Phalaenoptilus</i> nuttallii)	Scrubby and brushy areas, prairie, desert, rocky canyons, open woodlands, and broken forests. Mostly in arid and semiarid habitats. Nests in open areas on a bare site. About 4,125,500 acres of potentially suitable habitat occurs in the SEZ region. Year-round.	142,112 acres of potentially suitable habitat lost (3.4% of available potentially suitable habitat)	430,448 acres of potentially suitable habitat (10.4% of available potentially suitable habitat)	Moderate. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.
Common raven (Corvus corax)	Occurs in most habitats. Trees and cliffs provide cover. Roosts primarily in trees. Nests on cliffs, bluffs, tall trees, or human-made structures. Forages in sparse, open terrain. About 2,692,700 acres of potentially suitable habitat occurs in the SEZ region. Year-round.	112,684 acres of potentially suitable habitat lost (4.2% of available potentially suitable habitat)	245,576 acres of potentially suitable habitat (9.1% of available potentially suitable habitat)	Moderate. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.
		Maximum Area of Po	otential Habitat Affected ^a	Overall Impact
--	---	---	---	--
Common Name		Within SEZ	Outside SEZ	Species-Specific
(Scientific Name)	Habitat and Seasonal Occurrence	(Direct Effects) ⁶	(Indirect Effects) ^c	Mitigation
Neotropical Migrants (Cont.)				
Costa's hummingbird (<i>Calypte costae</i>)	Desert and semidesert areas, arid brushy foothills, and chaparral. Main habitats are desert washes, edges of desert riparian and valley foothill riparian areas, coastal shrub, desert scrub, desert succulent shrub, low-elevation chaparral, and palm oasis. Also in mountains, meadows, and gardens during migration and winter. Most common in canyons and washes when nesting. Nests are located in trees, shrubs, vines, or cacti. About 3,196,700 acres of potentially suitable habitat occurs in the SEZ region. Common in summer and uncommon in winter in California.	136,473 acres of potentially suitable habitat lost (4.3% of available potentially suitable habitat)	315,008 acres of potentially suitable habitat (9.8% of available potentially suitable habitat)	Moderate. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.
Greater roadrunner (<i>Geococcyx</i> californianus)	Desert scrub, chaparral, edges of cultivated lands, and arid open areas with scattered brush. Requires thickets, large bushes, or small trees for shade, refuge, and roosting. Usually nests low in trees, shrubs, or clumps of cactus. Rarely nests on ground. About 4,413,300 acres of potentially suitable habitat occurs in the SEZ region. Year- round.	162,473 acres of potentially suitable habitat lost (3.7% of available potentially suitable habitat)	459,771 acres of potentially suitable habitat (10.4% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is widespread in the area of direct effects. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.

		Maximum Area of Po	otential Habitat Affected ^a	Overall Impact Magnitude ^d and
Common Name (Scientific Name)	Habitat and Seasonal Occurrence	Within SEZ (Direct Effects) ^b	Outside SEZ (Indirect Effects) ^c	Species-Specific Mitigation ^e
Neotropical Migrants (Cont.) Horned lark (Eremophila alpestris)	Common to abundant resident in a variety of open habitats. Breeds in grasslands, sagebrush, semidesert shrublands, and alpine tundra. During migration and winter, inhabits the same habitats other than tundra, and also occurs in agricultural areas. Usually occurs where plant density is low and there are exposed soils. About 2,378,200 acres of potentially suitable habitat occurs in the SEZ region. Year- round.	111,496 acres of potentially suitable habitat lost (4.7% of available potentially suitable habitat)	235,350 acres of potentially suitable habitat (9.9% of available potentially suitable habitat)	Moderate. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.
House finch (<i>Carpodacus</i> <i>mexicanus</i>)	Variety of areas including arid scrub and brush, desert riparian areas, open woodlands, cultivated lands, and savannas. Usually forages in areas with elevated escape perches (e.g., trees, tall shrubs, transmission lines, and buildings). Roosts and nests in sheltered sites in trees; tall, dense shrubs; man-made structures; cliff crevices; or earthen banks. About 142,900 acres of potentially suitable habitat occurs in the SEZ region. Year-round.	1,188 acres of potentially suitable habitat lost (0.8% of available potentially suitable habitat)	9,900 acres of potentially suitable habitat (6.9% of available potentially suitable habitat)	Small. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.
Ladder-backed woodpecker (<i>Picoides scalaris</i>)	Fairly common in Mojave and Colorado Deserts. Variety of habitats including deserts, arid scrub, riparian woodlands, mesquite, scrub oak, pinyon-juniper woodlands. Digs nest hole in rotted stub or dead or dying branches of various trees. Also nests in saguaro, agave, yucca, fence posts, and utility poles. Nests on ledges; branches of trees, shrubs, and cactus; and holes in trees or walls. About 3,196,800 acres of potentially suitable habitat occurs in the SEZ region. Year-round.	136,695 acres of potentially suitable habitat lost (4.3% of available potentially suitable habitat)	315,008 acres of potentially suitable habitat (9.9% of available potentially suitable habitat)	Moderate. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.

		Maximum Area of Pe	otential Habitat Affected ^a	Overall Impact Magnitude ^d and
Common Name (Scientific Name)	Habitat and Seasonal Occurrence	Within SEZ (Direct Effects) ^b	Outside SEZ (Indirect Effects) ^c	Species-Specific Mitigation ^e
Neotropical Migrants (Cont.) Le Conte's thrasher (Toxostoma leconteii)	Open desert wash, alkali desert scrub, and desert succulent shrub habitats. Prefers to nest and forage in arroyos and washes lined with dense stands of creosotebush and salt bush. About 3,197,700 acres of potentially suitable habitat occurs in the SEZ region. Year-round, but uncommon to rare.	161,930 acres of potentially suitable habitat lost (5.1% of available potentially suitable habitat)	325,566 acres of potentially suitable habitat (10.2% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is widespread in the area of direct effects. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.

		Maximum Area of Po	otential Habitat Affected ^a	Overall Impact Magnitude ^d and
Common Name		Within SEZ	Outside SEZ	Species-Specific
(Scientific Name)	Habitat and Seasonal Occurrence	(Direct Effects) ^b	(Indirect Effects) ^c	Mitigation ^e
Neotropical Migrants (Cont.) Lesser nighthawk (Chordeiles acutipennis)	Open country, desert regions, scrub, savanna, and cultivated areas. Usually near water including open marshes, salt ponds, large rivers, rice paddies, and beaches. Roosts on low perches or the ground. Nests in the open on bare sites. About 4,603,400 acres of potentially suitable habitat occurs in the SEZ region. Uncommon summer resident.	162,473 acres of potentially suitable habitat lost (3.5% of available potentially suitable habitat)	594,861 acres of potentially suitable habitat (12.9% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is widespread in the area of direct effect. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act
Loggerhead shrike (<i>Lanius</i> ludovicianus)	Open country with scattered trees and shrubs, savanna, desert scrub, desert riparian, Joshua tree, and occasionally, open woodland habitats. Perches on poles, wires, or fence posts (suitable hunting perches are important aspect of habitat). Nests in shrubs and small trees. About 3,336,200 acres of potentially suitable habitat occurs in the SEZ region. Year-round.	137,593 acres of potentially suitable habitat lost (4.1% of available potentially suitable habitat)	324,251 acres of potentially suitable habitat (9.7% of available potentially suitable habitat)	Moderate. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.

		Maximum Area of Po	otential Habitat Affected ^a	Overall Impact Magnitude ^d and
Common Name		Within SEZ	Outside SEZ	Species-Specific
(Scientific Name)	Habitat and Seasonal Occurrence	(Direct Effects) ^b	(Indirect Effects) ^c	Mitigation ^e
<i>Neotropical</i> <i>Migrants (Cont.)</i> Phainopepla	Common in Mojave and Colorado Deserts. Desert scrub,	51,997 acres of	95.893 acres of	Moderate. Some
(Phainopepla nitens)	mesquite, juniper and oak woodlands, tall brush, washes, riparian woodlands, and orchards. Nests in dense foliage of large shrubs or trees, sometimes in a clump of mistletoe. About 1,113,000 acres of potentially suitable habitat occurs in the SEZ region. Year-round, but many move to more western and northern portions of California during summer.	potentially suitable habitat lost (4.7% of available potentially suitable habitat)	potentially suitable habitat (8.6% of available potentially suitable habitat)	measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.
Say's phoebe (<i>Sayornis saya</i>)	Arid open country, deserts, sagebrush plains, dry barren foothills, canyons, cliffs, ranches, and rural homes. Nests in cliff crevices, holes in banks, sheltered ledges, tree cavities, under bridges and roofs, and in mines. About 3,359,000 acres of potentially suitable habitat occurs in the SEZ region. Year-round.	118,034 acres of potentially suitable habitat lost (3.5% of available potentially suitable habitat)	360,289 acres of potentially suitable habitat (10.7% of available potentially suitable habitat)	Moderate. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.
Verdin (Auriparus flaviceps)	Common to abundant in Colorado Desert, less common in Mojave Desert. Desert riparian, desert wash, desert scrub, and alkali desert scrub areas with large shrubs and small trees. Nests in shrubs, small trees, or cactus. About 3,232,000 acres of potentially suitable habitat occurs in the SEZ region. Year-round.	135,132 acres of potentially suitable habitat lost (4.2% of available potentially suitable habitat)	309,905 acres of potentially suitable habitat (9.6% of available potentially suitable habitat)	Moderate. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.

Common Name (Scientific Name)	Habitat and Seasonal Occurrence	Maximum Area of Po Within SEZ (Direct Effects) ^b	otential Habitat Affected ^a Outside SEZ (Indirect Effects) ^c	Overall Impact Magnitude ^d and Species-Specific Mitigation ^e
Neotropical Migrants (Cont.) White-throated swift (Aeronautes saxatalis)	Mountainous country near cliffs and canyons where breeding occurs. Forages over forest and open situations. Nests in rock crevices and canyons, sometimes in buildings. Ranges widely over most terrain and habitats, usually high in the air. About 1,027,900 acres of potentially suitable habitat occurs in the SEZ region. Year- round.	6,828 acres of potentially suitable habitat lost (0.7% of available potentially suitable habitat)	125,922 acres of potentially suitable habitat (12.3% of available potentially suitable habitat)	Small. Some measure of mitigation provided by the requirements of the Migratory Bird Treaty Act.
<i>Birds of Prey</i> American kestrel (<i>Falco sparverius</i>)	Occurs in most open habitats, in various shrub and early successional forest habitats, forest openings, and various ecotones. Perches on trees, snags, rocks, utility poles and wires, and fence posts. Uses cavities in trees, snags, rock areas, banks, and buildings for nesting and cover. About 1,774,600 acres of potentially suitable habitat occurs in the SEZ region. Year-round.	37,970 acres of potentially suitable habitat lost (2.1% of available potentially suitable habitat)	266,637 acres of potentially suitable habitat (15.0% of available potentially suitable habitat)	Moderate

		Maximum Area of Po	otential Habitat Affected ^a	Overall Impact
Common Name (Scientific Name)	Habitat and Seasonal Occurrence	Within SEZ (Direct Effects) ^b	Outside SEZ (Indirect Effects) ^c	Magnitude ^a and Species-Specific Mitigation ^e
<i>Birds of Prey (cont.)</i> Golden eagle (<i>Aquila</i> <i>chrysaetos</i>)	Grasslands, shrublands, pinyon-juniper woodlands, and ponderosa pine forests. Occasionally in most other habitats, especially during migration and winter. Nests on cliffs and sometimes trees in rugged areas, with breeding birds ranging widely over surrounding areas. About 4,645,700 acres of potentially suitable habitat occurs in the SEZ region. Winter.	162,473 acres of potentially suitable habitat lost (3.5% of available potentially suitable habitat)	566,888 acres of potentially suitable habitat (12.2% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is widespread in the area of direct effects. Some measure of
				mitigation provided by the requirements of the Bald and Golden Eagle Protection Act.
Prairie falcon (<i>Falco mexicanus</i>)	Associated primarily with perennial grasslands, savannahs, rangeland, some agricultural fields, and desert scrub areas. Nests in potholes or well-sheltered ledges on rocky cliffs or steep earth embankments. May also nest in man-made excavations on otherwise unsuitable cliffs and old nests of ravens, hawks, and eagles. Forages in large patch areas with low vegetation. May forage over irrigated croplands in winter. About 4,161,000 acres of potentially suitable habitat occurs in the SEZ region. Year-round.	140,549 acres of potentially suitable habitat lost (3.4% of available potentially suitable habitat)	425,345 acres of potentially suitable habitat (10.2% of available potentially suitable habitat)	Moderate

		Maximum Area of Potential Habitat Affected ^a		Overall Impact Magnitude ^d and	
(Scientific Name)	Habitat and Seasonal Occurrence	(Direct Effects) ^b	(Indirect Effects) ^c	Mitigation ^e	
Birds of Prey (Cont.)					
Red-tailed hawk (<i>Buteo</i> <i>jamaicensis</i>)	Wide variety of habitats from deserts, mountains, and populated valleys. Open areas with scattered, elevated perch sites such as scrub desert, plains and montane grassland, agricultural fields, pastures, urban parklands, broken coniferous forests, and deciduous woodland. Nests on cliff ledges or in tall trees. About 433,400 acres of potentially suitable habitat occurs in the SEZ region. Year- round.	2,461 acres of potentially suitable habitat lost (0.6% of available potentially suitable habitat)	14,594 acres of potentially suitable habitat (3.4% of available potentially suitable habitat)	Small	
Turkey vulture (<i>Cathartes aura</i>)	Occurs in open stages of most habitats that provide adequate cliffs or large trees for nesting, roosting, and resting. Migrates and forages over most open habitats. Will roost communally in trees, exposed boulders, and occasionally transmission line support towers. About 3,372,500 acres of potentially suitable habitat occurs in the SEZ region. Summer.	117,359 acres of potentially suitable habitat lost (3.5% of available potentially suitable habitat)	351,380 acres of potentially suitable habitat (10.4% of available potentially suitable habitat)	Moderate	
<i>Upland Game Birds</i> Gambel's quail (<i>Callipepla</i> gambelii)	Deserts, especially in areas with brushy or thorny growth, and adjacent cultivated areas. Usually occurs near water. Nests on the ground under cover of small trees, shrubs, and grass tufts. About 4,158,700 acres of potentially suitable habitat occurs in the SEZ region. Year-round.	142,335 acres of potentially suitable habitat lost (3.4% of available potentially suitable habitat)	430,704 acres of potentially suitable habitat (10.4% of available potentially suitable habitat)	Moderate	

Common Name (Scientific Name)	Habitat and Seasonal Occurrence	Maximum Area of Po Within SEZ (Direct Effects) ^b	otential Habitat Affected ^a Outside SEZ (Indirect Effects) ^c	Overall Impact Magnitude ^d and Species-Specific Mitigation ^e
Upland Game Birds (Cont.) Mourning dove (Zenaida macroura)	Habitat generalist, occurring in grasslands, shrublands, croplands, lowland and foothill riparian forests, ponderosa pine forests, deserts, and urban and suburban areas. Rarely in aspen and other forests, coniferous woodlands, and alpine tundra. Nests on ground or in trees. Winters mostly in lowland riparian forests adjacent to cropland. About 3,426,600 acres of potentially suitable habitat occurs in the SEZ region. Year-round.	139,253 acres of potentially suitable habitat lost (4.1% of available potentially suitable habitat)	329,063 acres of potentially suitable habitat (9.6% of available potentially suitable habitat)	Moderate
White-winged dove (Zenaida asiatica)	Desert riparian, wash, succulent shrub, scrub, and Joshua tree habitats; orchards and vineyards, croplands, and pastures. About 3,266,300 acres of potentially suitable habitat occurs in the SEZ region. Summer.	162,473 acres of potentially suitable habitat lost (5.0% of available potentially suitable habitat)	330,669 acres of potentially suitable habitat (10.1% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is widespread in the area of direct effects.

^a Maximum area of potentially suitable habitat affected relative to total available potentially suitable habitat within the SEZ region (i.e., a 50-mi [80-km] radius from the center of the SEZ). Habitat availability was determined from potentially suitable land cover for each species (USGS 2004, 2005, 2007).

^b Direct effects within the SEZ consist of ground-disturbing activities associated with construction and the maintenance of an altered environment associated with operations. A maximum of 162,473 acres would be developed in the SEZ.

Footnotes continued on next page.

- ^c The area of indirect effects was assumed to be the area adjacent to the SEZ within 5 mi (8 km) of the SEZ boundary. Indirect effects include effects from surface runoff, dust, noise, lighting, etc. from the SEZ, but do not include ground-disturbing activities. The potential degree of indirect effects would decrease with increasing distance from the SEZ boundary.
- ^d Overall impact magnitude categories were based on professional judgment and were (1) *small*: ≤1% of potentially suitable habitat for the species would be lost and the activity would not result in a measurable change in the carrying capacity or population size in the affected area; (2) *moderate*: >1 but ≤10% of potentially suitable habitat for the species would be lost and the activity would potentially result in a measurable but moderate (not destabilizing) change in the carrying capacity or population size in the affected area; and (3) *large*: >10% of potentially suitable habitat for the species would be lost and the activity would result in a potentially large, measurable, and destabilizing change in the carrying capacity or population size in the affected area. Note that much greater weight was given to the magnitude of direct effects, because those effects would be difficult to mitigate. Programmatic design features would reduce most indirect effects to negligible levels.
- e Species-specific mitigation is presented for those species that have particular habitat features that could be readily avoided. For species or individuals occurring outside the SEZ (in the area of indirect effects), no mitigation measures beyond required programmatic design features have been identified.
- ^f To convert acres to km², multiply by 0.004047.
- Sources: CDFG (2008); NatureServe (2010); USGS (2004, 2005, 2007).

East SEZ. Within the SEZ, waterfowl, wading birds, and shorebirds are uncommon because of the lack of aquatic habitat, but occur within the area of the CRA just northwest of the SEZ. The killdeer (*Charadrius vociferus*) and least sandpiper (*Calidris minutilla*) (shorebird species) would be expected to occur on the SEZ, especially when Ford Dry Lake and Palen Lake contain standing water. The Colorado River, located more than 5 mi (8 km) east of the SEZ, and the Salton Sea, located more than 31 mi (50 km) southwest of the SEZ, would provide more productive habitat for this group of birds.

8 9

10

11

Neotropical Migrants

12 As discussed in Section 4.10.2.2.3, neotropical migrants represent the most diverse 13 category of birds within the six-state study area. Neotropical migrants expected to occur on or in 14 the affected area of the proposed Riverside East SEZ throughout the year include the black-tailed gnatcatcher, black-throated sparrow, cactus wren (Campylorhynchus brunneicapillus), common 15 16 poorwill (Phalaenoptilus nuttallii), common raven, Costa's hummingbird, crissal thrasher, greater roadrunner (Geococcyx californianus), horned lark (Eremophila alpestris), house finch 17 18 (Carpodacus mexicanus), ladder-backed woodpecker, Le Conte's thrasher, loggerhead shrike 19 (Lanius ludovicianus), phainopepla, Say's phoebe (Savornis saya), verdin, and white-throated 20 swift (Aeronautes saxatalis). The winter range for the Brewer's sparrow (Spizella breweri), 21 green-tailed towhee (Pipilo chlorurus), and sage sparrow (Amphispiza belli) encompasses the 22 SEZ, while the summer range for the ash-throated flycatcher (Myiarchus cinerascens) and lesser 23 nighthawk (Chordeiles acutipennis) encompasses the SEZ (CDFG 2008). 24

24 25

26

27

Birds of Prey

28 Section 4.10.2.2.4 provides an overview of the birds of prey (raptors, owls, and vultures) 29 within the six-state study area. Seventeen bird of prey species have ranges that encompass the 30 proposed Riverside East SEZ (CDFG 2008). Raptor species expected to occur within the SEZ 31 include the American kestrel (Falco sparverius, year-round), burrowing owl (year-round), 32 ferruginous hawk (Buteo regalis, winter), golden eagle (Aquila chrysaetos, winter), prairie falcon 33 (Falco mexicanus, year-round), red-tailed hawk (Buteo jamaicensis, year-round), and turkey 34 vulture (Cathartes aura, summer) (CDFG 2008). However, the American kestrel, golden eagle, 35 prairie falcon, and red-tailed hawk make only infrequent use of the desert regions within which 36 the Riverside East SEZ occurs. The golden eagle is a Fully Protected species by the State of 37 California (CDFG 2010b).

38 39

40

Upland Game Birds

Section 4.10.2.2.5 provides an overview of the upland game birds (primarily pheasants,
grouse, quail, and doves) that occur within the six-state study area. Upland game species that
could occur year-round within the proposed Riverside East SEZ are Gambel's quail (*Callipepla gambelii*) and mourning dove (*Zenaida macroura*), while the white-winged dove (*Zenaida asiatica*) would occur during the summer (CDFG 2008). Gambel's quail is common within the

2	streams, springs, and water holes. While it feeds in open habitats, trees or tall shrubs are required
3	for escape cover. It also requires a nearby source of water, particularly during hot summer
4	months (CDFG 2008). Up to 400,000 Gambel's quail are harvested annually in California
5	(CDFG 2008). The mourning dove is common throughout California and can be found in a wide
6	variety of habitats. Regardless of habitat occupied, it requires a nearby water source
7	(CDFG 2008). The white-winged dove occurs in the southeastern corner of California. It inhabits
8	desert riparian, wash, succulent shrub, scrub, alkali scrub, and Joshua tree habitats. It also occurs
9	in orchards, vineyards, cropland, and pastures (CDFG 2008).
10	
11	Table 9.4.11.2-1 provides habitat information for the representative bird species that
12	could occur on the affected area of the proposed Riverside East SEZ. Because of their special
13	status standing, the burrowing owl, crissal thrasher, ferruginous hawk, and short-eared owl are
14	discussed in Section 9.4.12.1.

Colorado and Mojave Desert areas of California. It prefers riparian areas and also occurs near

15

17

18

1

16

9.4.11.2.2 Impacts

19 The types of impacts that birds could incur from construction, operation, and 20 decommissioning of utility-scale solar energy facilities are discussed in Section 5.10.2.2. Any 21 such impacts would be minimized through the implementation of required programmatic design 22 features described in Appendix A, Section A.2.2, and through any additional mitigation applied. 23 Section 9.4.11.2.3, below, identifies design features of particular relevance to the proposed 24 Riverside East SEZ.

25

26 The assessment of impacts on bird species is based on available information on the 27 presence of species in the affected area as presented in Section 9.4.11.2.1, following the analysis 28 approach described in Appendix M. Additional NEPA assessments and coordination with state 29 natural resource agencies may be needed to address project-specific impacts more thoroughly. 30 These assessments and consultations could result in additional required actions to avoid or 31 mitigate impacts on birds (see Section 9.4.11.2.3). 32

33 In general, impacts on birds would result from habitat disturbance (i.e., habitat reduction, 34 fragmentation, and alteration) and from disturbance, injury, or mortality to individual birds. 35 Table 9.4.11.2-1 summarizes the potential impacts on representative bird species resulting from 36 solar energy development that could occur on or in the affected area in the proposed Riverside 37 East SEZ. Direct impacts on representative bird species would be small for the least sandpiper, 38 house finch, white-throated sparrow, and red-tailed hawk, because 0.3 to 0.8% of habitats 39 potentially suitable for the species would be lost (Table 9.4.11.2-1). Moderate direct impacts on 40 the other representative bird species would occur, with loss of potentially suitable habitats ranging from 1.1 to 5.5% (Table 9.4.11.2-1). Larger areas of potentially suitable habitat for the 41 42 birds occur within the area of potential indirect effects (e.g., up to 15.0% of potentially suitable 43 habitat for the American kestrel). Other impacts on birds could result from collision with 44 vehicles and structures, surface water and sediment runoff from disturbed areas, fugitive dust 45 generated by project activities, noise, lighting, spread of invasive species, accidental spills, and 46 harassment. Indirect impacts on areas outside the SEZ (e.g., impacts caused by dust generation,

erosion, and sedimentation) are expected to be negligible with implementation of programmatic
 design features.

4 Decommissioning of facilities and reclamation of disturbed areas after operations cease 5 could result in short-term negative impacts on individuals and habitats adjacent to project areas, 6 but long-term benefits would accrue if suitable habitats in previously disturbed areas were 7 restored. Section 5.10.2.1.4 provides an overview of the impacts of decommissioning and 8 reclamation on wildlife. Of particular importance for reptile species would be the restoration of 9 original ground surface contours, soils, and native plant communities associated with semiarid 10 shrublands.

11 12

13

14

3

9.4.11.2.3 SEZ-Specific Design Features and Design Feature Effectiveness

15 The successful implementation of programmatic design features presented in 16 Appendix A, Section A.2.2, would reduce the potential for effects on birds, especially for those species that depend on habitat types that can be avoided (e.g., ephemeral drainages, Ford Dry 17 Lake and Palen Lake, wetlands, and the CRA). Indirect impacts could be reduced to negligible 18 19 levels by implementing programmatic design features, especially those engineering controls that 20 would reduce runoff, sedimentation, spills, and fugitive dust. While SEZ-specific design features 21 important to reducing impacts on birds are best established when project details are considered, 22 some design features can be identified at this time, as follows:

- 23 24 • Pre-disturbance surveys should be conducted within the SEZ for bird species 25 listed under the Migratory Bird Treaty Act, including those species considered to be desert bird focal species. Nesting habitat for bird species listed under the 26 27 Migratory Bird Treaty Act should be avoided during the nesting season. 28 29 Plant species that positively influence the presence and abundance of the ٠ 30 desert bird focal species should be avoided to the extent practicable. These 31 species include Goodding's willow, yucca, Joshua tree, mesquite, honey mesquite, screwbean, desert mistletoe, big saltbush, smoketree, and catclaw 32 33 acacia (CalPIF 2009). 34 35 • Take of golden eagles and other raptors should be avoided. Mitigation regarding the golden eagle should be developed in consultation with the 36 37 USFWS and CDFG. A permit may be required under the Bald and Golden 38 Eagle Protection Act. 39 40 • To the extent practicable, avoid ephemeral drainages, Ford Dry Lake and Palen Lake, wetlands, and the CRA. 41 42 43 If these SEZ-specific design features are implemented in addition to programmatic project design features, impacts on bird species could be reduced. Any residual impacts on birds 44
- 45

are anticipated to be small given the relative abundance of suitable habitats in the SEZ region. However, as potentially suitable habitats for a number of the bird species occur throughout much of the SEZ, additional species-specific mitigation of direct effects for those species would be difficult or infeasible. The potential for indirect impacts on several bird species (particularly waterfowl, wading birds, and shorebirds) could be reduced by maximizing the distance between solar energy facilities and the CRA.

9.4.11.3 Mammals

9.4.11.3.1 Affected Environment

14 This section addresses mammal species that are known to occur, or for which suitable habitat occurs, on or within the potentially affected area of the Riverside East SEZ. The list of 15 16 mammal species potentially present in the project area was determined from range maps and habitat information available from the California Wildlife Habitat Relationships System (CDFG 17 18 2008). Land cover types suitable for each species were determined from SWReGAP (USGS 19 2004, 2005, 2007). See Appendix M for additional information on the approach used. Based on 20 species distributions and habitat preferences, more than 40 mammal species could occur within the SEZ (CDFG 2008). The following discussion emphasizes big game and other mammal 21 22 species that (1) have key habitats within or near the Riverside East SEZ, (2) are important to 23 humans (e.g., big game, small game, and furbearer species), and/or (3) are representative of other 24 species that share similar habitats.

25 26

27

28

8 9

10 11 12

13

Big Game

29 The cougar (*Puma concolor*)⁴, desert bighorn sheep (*Ovis canadensis nelsoni*), and mule 30 deer (Odocoileus hemionus) are the big game species whose ranges encompass the area of the proposed Riverside East SEZ. The cougar inhabits cliffs, forests, woodlands, shrublands, 31 32 chaparral, and deserts. It generally occurs in mountainous or remote undisturbed areas. However, 33 it also occurs in a variety of other habitats, including swamps, riparian woodlands, and broken 34 country with brush or woodland cover. Habitat areas of more than 500,000 acres (2,000 km²) are 35 needed for long-term population survival, and protection of immigration corridors is also 36 desirable (NatureServe 2010). The cougar is generally absent from desert areas that do not 37 support mule deer. Its seasonal movements are generally in response to following migrating deer 38 herds. There are possibly more than 5,000 cougar in California with the numbers apparently 39 increasing (CDFG 2008).

- 40
- 41

⁴ Although cougar hunting does not occur in California, it is included with big game for the sake of continuity with the SEZ wildlife sections for the other five states.

Because it is a BLM sensitive species, the desert bighorn sheep is discussed in
 Section 9.4.12.

3 4 The mule deer is common to abundant throughout California, except in deserts and 5 intensely farmed areas (CDFG 2008). It prefers a mosaic of vegetation that has herbaceous 6 openings, dense brush or tree thickets, riparian areas, and abundant edges. Mule deer are 7 browsers and grazers, feeding on shrubs, forbs, and a few grasses. Brush is important for 8 escape cover and for thermal regulation in winter and summer (CDFG 2008). The burro deer 9 (Odocoileus hemionus eremicus), a subspecies of mule deer, occurs in the Colorado Desert. It 10 occurs primarily along the Colorado River, especially during hot summers, and in desert wash woodland communities when away from the river (generally when late summer thunderstorms 11 12 and cooler temperatures allow the deer to move up the larger washes into the mountains or wash 13 complexes in the foothills) (BLM and CDFG 2002). Burro deer consume foliage from riparian 14 and woodland trees (e.g., willow, palo verde, and ironwood) and various shrubs. Major threats to 15 the burro deer include habitat loss from agricultural development and urbanization and 16 infestation of tamarisk along the Colorado River (BLM and CDFG 2002).

17 18

19

20

Other Mammals

A number of small game and furbearer species occur within the area of the proposed
Riverside East SEZ: the American badger (*Taxidea taxus*), black-tailed jackrabbit (*Lepus californicus*), bobcat (*Lynx rufus*), coyote (*Canis latrans*), desert cottontail (*Sylvilagus audubonii*), round-tailed ground squirrel (*Spermophilus tereticaudus*), and white-tailed antelope
squirrel (*Ammospermophilus leucurus*) (CDFG 2008).

26

27 Nongame (small) mammal species, such as bats, mice, kangaroo rats, and shrews, also 28 occur within the area of the Riverside East SEZ: the cactus mouse (*Peromyscus eremicus*), 29 canyon deermouse (P. crinitus), desert kangaroo rat (Dipodomys deserti), desert shrew 30 (Notiosorex crawfordi), desert woodrat (Neotoma lepida), little pocket mouse (Perognathus longimembris), long-tailed pocket mouse (Chaetodipus formosus), Merriam's kangaroo rat 31 32 (Dipodomys merriami), and southern grasshopper mouse (Onychomys torridus) (CDFG 2008). 33 The ranges of nine bat species encompass the SEZ: big brown bat (*Eptesicus fuscus*), Brazilian 34 free-tailed bat (Tadarida brasiliensis), Californian leaf-nosed bat (Macrotus californicus), California mastiff bat (Eumops perotis californicus), California myotis (Myotis californicus), 35 pallid bat (Antrozous pallidus), spotted bat (Euderma maculatum), Townsend's big-eared bat 36 37 (Corvnorhinus townsendii), and western pipistrelle (Parastrellus hesperus). Most bat species 38 would utilize the SEZ only during foraging. Roost sites for the species (e.g., caves, hollow trees, 39 rock crevices, or buildings) are absent to scarce on or in the affected area of the SEZ. 40

41

Table 9.4.11.3-1 provides habitat information for the representative mammal species that
could occur on or in the affected area of the Riverside East SEZ. Because of their special status
standing, the California mastiff bat, Californian leaf-nose bat, pallid bat, and Townsend's bigeared bat are discussed in Section 9.4.12.

9.4.11.3.2 Impacts

9 The types of impacts that mammals could incur from construction, operation, and 10 decommissioning of utility-scale solar energy facilities are discussed in Section 5.10.2.3. Any 11 such impacts would be minimized through the implementation of required programmatic design 12 features described in Appendix A, Section A.2.2, and through any additional mitigation applied. 13 Section 9.4.11.3.3, below, identifies design features of particular relevance to the proposed 14 Riverside East SEZ.

- 16 The assessment of impacts on mammal species is based on available information on the 17 presence of species in the affected area as presented in Section 9.4.11.3.1, following the analysis 18 approach described in Appendix M. Additional NEPA assessments and coordination with state 19 natural resource agencies may be needed to address project-specific impacts more thoroughly. 20 These assessments and consultations could result in additional required actions to avoid or 21 mitigate impacts on mammals (see Section 9.4.11.3.3).
- Table 9.4.11.3-1 summarizes the potential impacts on representative mammal species
 resulting from solar energy development (with the implementation of required programmatic
 design features) in the proposed Riverside East SEZ.
- Although the Riverside East SEZ falls within the overall range of the cougar, desert habitat is not the preferred habitat for the species. It is unlikely that impacts from solar energy development within the SEZ would represent an actual loss of occupied habitat, although direct impacts could occur to 117,359 acres (474.9 km²), about 3.3%, of potentially suitable habitat within the SEZ region (Table 9.4.11.3-1).
- Mule deer would occur near the Colorado River most of the year, particularly during the hot summer months. However, the species could occur within the desert scrub and desert wash habitats of the SEZ for portions of the year, particularly when standing water occurs in Ford Dry Lake and Palen Lake. Almost 162,500 acres (658 km²) of potentially suitable mule deer habitat could be directly affected by solar energy development on the proposed Riverside East SEZ (Table 9.4.11.3-1). Fencing around a large solar development within the SEZ could affect movement of mule deer between the Colorado River and mountains or foothills.
- 40

32

6 7

8

15

22

41

TABLE 9.4.11.3-1Representative Mammal Species That Could Occur on or in the Affected Area of the Proposed Riverside East SEZand Potential Impacts

		Maximum Area of Po	otential Habitat Affected ^a	Overall Impact Magnitude ^d and
Common Name (Scientific Name)	Habitat	Within SEZ (Direct Effects) ^b	Outside SEZ (Indirect Effects) ^c	Species-Specific Mitigation ^e
Rig Game				
Cougar (Puma concolor)	Widespread, uncommon permanent resident in California. Most common in rough, broken foothills and canyon country, often in association with montane forests, shrublands/chaparral, and pinyon-juniper woodlands. Also occurs in deserts, swamps, and riparian area. Seeks cover in caves, other natural cavities, and thickets in brush and timber. About 3,508,100 acres ^f of potentially suitable habitat occurs in the SEZ region.	117,359 acres of potentially suitable habitat lost (3.3% of available potentially suitable habitat)	351,380 acres of potentially suitable habitat (10.0% of available potentially suitable habitat)	Moderate
Mule deer (Odocoileus hemionus)	Occurs in early to intermediate successional stages of most forest, woodland, and brush habitats. About 3,433,200 acres of potentially suitable habitat occurs in the SEZ region.	162,473 acres of potentially suitable habitat lost (4.7% of available potentially suitable habitat)	335,963 acres of potentially suitable habitat (9.8% of available potentially suitable habitat)	Moderate. Ensure that fencing does not block the free passage of mule deer between the Colorado River and mountains or foothills.
Small Game and Furbearers				
American badger (<i>Taxidea taxus</i>)	Open grasslands and deserts, meadows in subalpine and montane forests, alpine tundra. Dig burrows in friable soils. Most common in areas with abundant populations of ground squirrels, prairie dogs, and pocket gophers. Relatively uncommon throughout California. About 2,502,700 acres of potentially suitable habitat occurs in the SEZ region.	110,156 acres of potentially suitable habitat lost (4.4% of available potentially suitable habitat)	230,581 acres of potentially suitable habitat (9.2% of available potentially suitable habitat)	Moderate

Common Name	Habitat	Maximum Area of Po Within SEZ	otential Habitat Affected ^a Outside SEZ	Overall Impact Magnitude ^d and Species-Specific Mitigation ^e
	Habitat	(Direct Effects)	(indirect Effects)	Witigation
Small Game and Furbearers (Cont.)				
Black-tailed jackrabbit (<i>Lepus</i> <i>californicus</i>)	Open plains, fields, and deserts with scattered thickets or patches of shrubs. Also open, early stages of forests and chaparral habitats. Rests during the day in shallow depressions, and uses shrubs for cover. About 4,065,600 acres of potentially suitable habitat occurs in the SEZ region.	162,473 acres of potentially suitable habitat lost (4.0% of available potentially suitable habitat)	450,831 acres of potentially suitable habitat (11.1% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is widespread in the area of direct effect.
Bobcat (<i>Lynx rufus</i>)	Occurs in nearly all habitats and successional stages. Optimal habitats include mixed woodlands and forest edges, hardwood forests, swamps, forested river bottoms, brushlands, deserts, mountains, and other area with thick undergrowth. Availability of water may limit its distribution in xeric regions. Uses rocky clefts, caves, hollow logs, spaces under fallen trees, and so forth when inactive; usually changes shelter areas daily. About 2,951,800 acres of potentially suitable habitat occurs in the SEZ region.	136,053 acres of potentially suitable habitat lost (4.6% of available potentially suitable habitat)	322,483 acres of potentially suitable habitat (10.9% of available potentially suitable habitat)	Moderate
Coyote (Canis latrans)	Suitable habitat characterized by interspersions of brush and open areas with free water. Least common in dense coniferous forest. Where human control efforts occur, it is restricted to broken, rough country with abundant shrub cover and a good supply of rabbits or rodents. About 4,822,200 acres of potentially suitable habitat occurs in the SEZ region.	162,473 acres of potentially suitable habitat lost (3.4% of available potentially suitable habitat)	605,581 acres of potentially suitable habitat (12.6% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is widespread in the area of direct effect.

		Maximum Area of Po	otential Habitat Affected ^a	Overall Impact
Common Name (Scientific Name)	Habitat	Within SEZ (Direct Effects) ^b	Outside SEZ (Indirect Effects) ^c	Magnitude ^d and Species-Specific Mitigation ^e
Small Game and				
Furbearers (Cont.) Desert cottontail (Sylvilagus audubonii)	Abundant to common in grasslands, open forests, and desert shrub habitats. Can occur in areas with minimal vegetation as long as adequate cover (e.g., rock piles, fallen logs, fence rows) is present. Thickets and patches of shrubs, vines, and brush also used as cover. About 3,233,000 acres of potentially suitable habitat occurs in the SEZ region.	136,030 acres of potentially suitable habitat lost (4.2% of available potentially suitable habitat)	318,574 acres of potentially suitable habitat (9.9% of available potentially suitable habitat)	Moderate
Round-tailed ground squirrel (Spermophilus tereticaudus)	Optimum habitat includes desert succulent shrub, desert wash, desert scrub, alkali desert scrub, and levees in cropland habitat. Also occurs in urban habitats. Burrows usually at base of shrubs. About 2,558,600 acres of potentially suitable habitat occurs in the SEZ region.	111,719 acres of potentially suitable habitat lost (4.4% of available potentially suitable habitat)	235,684 acres of potentially suitable habitat (9.2% of available potentially suitable habitat)	Moderate
White-tailed antelope squirrel (<i>Ammospermophilus</i> <i>leucurus</i>)	Common to abundant in California deserts. Optimal habitats are desert scrub, sagebrush, alkali desert scrub, Joshua tree, bitterbrush, and pinyon-juniper. Fairly common in desert riparian, desert succulent shrub, and desert wash habitats. Also occurs in mixed chaparral and annual grassland habitats. Requires friable soil for burrowing. Burrows may be under shrubs or in open, often uses abandoned kangaroo rat burrows. About 4,053,800 acres of potentially suitable habitat occurs in the SEZ region.	140,549 acres of potentially suitable habitat lost (3.5% of available potentially suitable habitat)	425,267 acres of potentially suitable habitat (10.5% of available potentially suitable habitat)	Moderate

		Maximum Area of Po	Maximum Area of Potential Habitat Affected ^a		
Common Name (Scientific Name)	Habitat	Within SEZ (Direct Effects) ^b	Outside SEZ (Indirect Effects) ^c	Magnitude ^d and Species-Specific Mitigation ^e	
Nongame (Small) Mammals					
Big brown bat (<i>Eptesicus fuscus</i>)	Deserts, forests and woodlands, old fields, shrublands, and urban/suburban areas. Uncommon in hot desert habitats. Summer roosts are in buildings, hollow trees, rock crevices, tunnels, and cliff swallow nests. Maternity colonies occur in attics, barns, tree cavities, rock crevices, and caves. Caves, mines, and man-made structures used for hibernation sites. About 3,578,200 acres of potentially suitable habitat occurs in the SEZ region.	116,538 acres of potentially suitable habitat lost (3.3% of available potentially suitable habitat)	355,936 acres of potentially suitable habitat (9.4% of available potentially suitable habitat)	Moderate	
Brazilian free-tailed bat (<i>Tadarida</i> brasiliensis)	Cliffs, deserts, grasslands, old fields, savannas, shrublands, woodlands, and suburban/urban areas. Roosts in buildings, caves, and hollow trees. May roost in rock crevices, bridges, signs, or cliff swallow nests during migration. Large maternity colonies inhabit caves, buildings, culverts, and bridges. About 4,291,600 acres of potentially suitable habitat occurs in the SEZ region.	162,473 acres of potentially suitable habitat lost (3.8% of available potentially suitable habitat)	451,224 acres of potentially suitable habitat (10.5% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is widespread in the area of direct effect.	
Cactus mouse (Peromyscus eremicus)	Deserts, shrublands, chaparral, and coniferous woodlands. Occurs on rocky areas and areas with sandy substrates and loamy soils. Nests in rock heaps, stone walls, burrows, brush fences, and woodrat houses. About 3,209,200 acres of potentially suitable habitat occurs in the SEZ region.	136,695 acres of potentially suitable habitat lost (4.3% of available potentially suitable habitat)	315,008 acres of potentially suitable habitat (9.8% of available potentially suitable habitat)	Moderate	

		Maximum Area of Po	Overall Impact	
Common Name (Scientific Name)	Habitat	Within SEZ (Direct Effects) ^b	Outside SEZ (Indirect Effects) ^c	Species-Specific Mitigation ^e
Nongame (Small) Mammals (Cont.)				
Californian myotis (<i>Myotis</i> californicus)	Cliffs, deserts, forests, woodlands, grasslands, savannas, shrublands, and savannas. Often uses man-made structures for night roosts. Uses crevices for summer day roosts. May roost on small desert shrubs or on the ground. Hibernates in caves, mines, tunnels, or buildings. Maternity colonies in rock crevices, under bark, or under eaves of buildings. Common to abundant below 6,000 ft. About 4,078,900 acres of potentially suitable habitat occurs in the SEZ region.	140,772 acres of potentially suitable habitat lost (3.5% of available potentially suitable habitat)	425,353 acres of potentially suitable habitat (10.4% of available potentially suitable habitat)	Moderate
Canyon deermouse (Peromyscus crinitus)	Found in most desert and chaparral habitats. Gravelly desert pavement, talus, boulders, cliffs, and slickrock— rocky areas with virtually any type of plant cover. About 2,898,300 acres of potentially suitable habitat occurs in the SEZ region.	141,075 acres of potentially suitable habitat lost (4.9% of available potentially suitable habitat)	371,040 acres of potentially suitable habitat (12.8% of available potentially suitable habitat)	Moderate
Desert kangaroo rat (<i>Dipodomys deserti</i>)	Low deserts, deep wind-drifted sandy soil with sparse vegetation, alkali sinks, and shadscale or creosote bush scrub. Nests in burrows dug in mounds, usually under vegetation. About 722,200 acres of potentially suitable habitat occurs in the SEZ region.	51,774 acres of potentially suitable habitat lost (7.2% of available potentially suitable habitat)	95,311 acres of potentially suitable habitat (13.2% of available potentially suitable habitat)	Moderate

		Maximum Area of Po	Overall Impact Magnitude ^d and	
Common Name	Habitat	Within SEZ	Outside SEZ	Species-Specific
(Scientific Name)	парна	(Direct Effects)	(Indirect Effects)	Mitigation
Nongame (Small) Mammals (Cont.)				
Desert shrew (Notiosorex crawfordi)	Generally found in arid areas with adequate cover for nesting and resting. Deserts, semiarid grasslands with scattered cactus and yucca, chaparral slopes, alluvial fans, sagebrush, gullies, juniper woodlands, riparian areas, and dumps. About 4,334,000 acres of potentially suitable habitat occurs in the SEZ region.	162,473 acres of potentially suitable habitat lost (3.7% of available potentially suitable habitat)	446,691 acres of potentially suitable habitat (10.3% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is widespread in the area of direct effect.
Desert woodrat (Neotoma lepida)	Sagebrush scrub; chaparral; deserts and rocky slopes with scattered cactus, yucca, pine-juniper, or other low vegetation; creosotebush desert; Joshua tree woodlands; scrub oak woodlands, pinyon-juniper woodlands; and riparian zones. Most abundant in rocky areas with Joshua trees. Dens built of debris on ground, among cacti or yucca, along cliffs, among rocks, or occasionally in trees. About 4,546,200 acres of potentially suitable habitat occurs in the SEZ region.	162,473 acres of potentially suitable habitat lost (3.6% of available potentially suitable habitat)	579,200 acres of potentially suitable habitat (12.7% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is widespread in the area of direct effect.

		Maximum Area of Po	Overall Impact Magnitude ^d and	
Common Name (Scientific Name)	Habitat	Within SEZ (Direct Effects) ^b	Outside SEZ (Indirect Effects) ^c	Species-Specific Mitigation ^e
Nongame (Small) Mammals (Cont.) Little pocket mouse (Perognathus longimembris)	Common to abundant in southern California deserts. Preferred habitat includes desert riparian, desert scrub, desert wash, and sagebrush. Nests in an underground burrow. Sandy soil preferred for burrowing, but also commonly burrows on gravel washes and on stony soils. About 3,244,600 acres of potentially suitable habitat occurs in the SEZ region.	162,473 acres of potentially suitable habitat lost (5.0% of available potentially suitable habitat)	330,661 acres of potentially suitable habitat (10.2% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is widespread in the area of direct effect.
Merriam's kangaroo rat (<i>Dipodomys</i> <i>merriami</i>)	Most widespread kangaroo rat in California. In southern California, it occurs in desert scrub and alkali desert scrub, sagebrush, Joshua tree, and pinyon-juniper habitats. Uses desert flats or slopes with sparse to moderate canopy coverage and sandy to gravelly subsrates. Uses underground burrows that are often located at the base of a shrub. About 3,290,800 acres of potentially suitable habitat occurs in the SEZ region.	162,473 acres of potentially suitable habitat lost (4.9% of available potentially suitable habitat)	340,466 acres of potentially suitable habitat (10.3% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is widespread in the area of direct effect.
Southern grasshopper mouse (<i>Onychomys</i> <i>torridus</i>)	Hot, arid valleys and scrub deserts with sparse and scattered vegetation such as mesquite, creosotebush, cholla, yucca, and short grasses. Frequents scrub habitats with friable soils for digging. Also uses abandoned underground burrows. About 3,284,300 acres of potentially suitable habitat occurs in the SEZ region.	162,473 acres of potentially suitable habitat lost (4.9% of available potentially suitable habitat)	330,987 acres of potentially suitable habitat (10.1% of available potentially suitable habitat)	Moderate. No species-specific mitigation of direct effects is feasible because suitable habitat is widespread in the area of direct effect.

		Maximum Area of Po	Overall Impact	
Common Name (Scientific Name)	Habitat	Within SEZ (Direct Effects) ^b	Outside SEZ (Indirect Effects) ^c	Species-Specific Mitigation ^e
Nongame (Small) Mammals (Cont.)				
Spotted bat (Euderma maculatum)	Mostly found in the foothills, mountains, and desert regions of southern California. Roosts in caves and cracks or crevices in cliffs and canyons. About 3,863,400 acres of potentially suitable habitat occurs in the SEZ region.	140,772 acres of potentially suitable habitat lost (3.6% of available potentially suitable habitat)	425,601 acres of potentially suitable habitat (11.0% of available potentially suitable habitat)	Moderate
Western pipistrelle (<i>Parastrellus</i> <i>hesperus</i>)	Deserts and lowlands, desert mountain ranges, desert scrub flats, and rocky canyons. Roosts mostly in rock crevices, sometimes mines and caves, and rarely in buildings. Suitable roosts occur in rocky canyons and cliffs. Most abundant bat in desert regions. About 3,450,700 acres of potentially suitable habitat occurs in the SEZ region.	116,538acres of potentially suitable habitat lost (3.4% of available potentially suitable habitat)	355,587 acres of potentially suitable habitat (10.3% of available potentially suitable habitat)	Moderate

- ^a Maximum area of potentially suitable habitat affected relative to total available potentially suitable habitat within the SEZ region (i.e., a 50-mi [80-km] radius from the center of the SEZ). Habitat availability was determined from potentially suitable land cover for each species (USGS 2004, 2005, 2007).
- ^b Direct effects within the SEZ consist of ground-disturbing activities associated with construction and the maintenance of an altered environment associated with operations. A maximum of 162,473 acres would be developed in the SEZ.
- ^c The area of indirect effects was assumed to be the area adjacent to the SEZ within 5 mi (8 km) of the SEZ boundary. Indirect effects include effects from surface runoff, dust, noise, lighting, etc., from the SEZ, but do not include ground-disturbing activities. The potential degree of indirect effects would decrease with increasing distance from the SEZ boundary.

Footnotes continued on next page.

^d Overall impact magnitude categories were based on professional judgment and were (1) *small*: ≤1% of potentially suitable habitat for the species would be lost and the activity would not result in a measurable change in the carrying capacity or population size in the affected area; (2) *moderate*: >1 but ≤10% of potentially suitable habitat for the species would be lost and the activity would potentially result in a measurable but moderate (not destabilizing) change in the carrying capacity or population size in the affected area; and (3) *large*: >10% of potentially suitable habitat for the species would be lost and the activity would result in a potentially large, measurable, and destabilizing change in the carrying capacity or population size in the affected area. Note that much greater weight was given to the magnitude of direct effects, because those effects would be difficult to mitigate. Programmatic design features would reduce most indirect effects to negligible levels.

- e Species-specific mitigation is presented for those species that have particular habitat features that could be readily avoided. For species or individuals occurring outside the SEZ (in the area of indirect effects), no mitigation measures beyond required programmatic design features have been identified.
- f To convert acres to km^2 , multiply by 0.004047.

Sources: CDFG (2008); NatureServe (2010); USGS (2004, 2005, 2007).

1 Direct impacts on small game, furbearers, and nongame (small) mammal species would 2 be moderate, ranging from 3.3 to 7.2% of potentially suitable habitats lost for the representative 3 species listed in Table 9.4.11.3-1. Larger areas of suitable habitat for mammal species occur 4 within the area of potential indirect effects (e.g., ranging from 9.2% for the American badger and 5 round-tailed ground squirrel to 19.3% for the desert bighorn sheep). Other impacts on mammals 6 could result from collision with fences and vehicles, surface water and sediment runoff from 7 disturbed areas, fugitive dust generated by project activities, noise, lighting, spread of invasive 8 species, accidental spills, and harassment. These indirect impacts are expected to be negligible 9 with implementation of programmatic design features.

10

Decommissioning of facilities and reclamation of disturbed areas after operations cease could result in short-term negative impacts on individuals and habitats adjacent to project areas, but long-term benefits would accrue if suitable habitats were restored in previously disturbed areas. Section 5.10.2.1.4 provides an overview of the impacts of decommissioning and reclamation on wildlife. Of particular importance for mammal species would be the restoration of original ground surface contours, soils, and native plant communities associated with semiarid shrublands.

- 18
- 19

20 21

27

28

29 30

31

32

9.4.11.3.3 SEZ-Specific Design Features and Design Feature Effectiveness

The implementation of required programmatic design features described in Appendix A, Section A.2.2, would reduce the potential for effects on mammals. While some SEZ-specific design features are best established when project details are considered, design feature that can be identified at this time include the following:

- The fencing around the solar energy development should not block the free passage of mule deer between the Colorado River and mountains or foothills.
 - To the extent practicable, ephemeral drainages, Ford Dry Lake and Palen Lake, wetlands, and the CRA should be avoided.

33 If these SEZ-specific design features are implemented in addition to programmatic design 34 features, impacts on mammal species could be reduced. However, because potentially suitable 35 habitats for a number of the mammal species occur throughout much of the SEZ, additional 36 species-specific mitigation of direct effects for those species would be difficult or infeasible. 37

- 38 39
- 9.4.11.4 Aquatic Biota
- 40
- 41 42

43

9.4.11.4.1 Affected Environment

This section addresses aquatic habitats and biota known to occur on the proposed
Riverside East SEZ itself or within an area that could be affected, either directly or indirectly, by
activities associated with solar energy development within the SEZ. There are no perennial

1 streams within the proposed Riverside East SEZ, but the intermittent McCoy Wash is present. 2 McCoy Wash carries substantial flow, but there is little information on aquatic communities, if 3 present. Palen Lake and Ford Dry Lake are the only water bodies within the SEZ, with 4 approximately 745 acres (3 km²) of Palen Lake located on the western side of the SEZ, and 5 3,945 acres (16 km²) of Ford Dry Lake located in the center of the SEZ. Both Palen Lake and 6 Ford Dry Lake are intermittent and rarely have standing water, but temporary ponding may occur 7 especially in Palen Lake, which has groundwater located near the surface. As described in 8 Section 9.4.9.1.1, there are also 3,807 acres (15 km²) of wetland within the SEZ. However, 9 wetlands near dry lakes rarely have water (USFS 1998), and the NWI classifies these wetlands as 10 intermittently flooded, indicating that surface water is usually absent but may be present for variable periods. Although site-specific data are s not available, Palen Lake, Ford Dry Lake, and 11 12 wetlands may contain aquatic biota adapted to desiccating conditions (Graham 2001). On the 13 basis of information from ephemeral pools in the American Southwest, ostracods (seed shrimp) 14 and small planktonic crustaceans (e.g., copepods or cladocerans) are expected to be present, and larger branchiopod crustaceans such as fairy shrimp could occur (Graham 2001). Various types 15 16 of insects that have aquatic larval stages, such as dragonflies and a variety of midges and other fly larvae, may also occur depending on pool longevity, distance to permanent water features, 17 and the abundance of other invertebrates for prey (Graham 2001). However, more site-specific 18 19 data are needed to fully evaluate the extent to which aquatic biota are present.

20

21 There are no natural perennial stream features within the area of indirect effects. 22 However, 31 mi (50 km) of the CRA is present, primarily along the western edge of the SEZ. The aqueduct diverts water west from the Colorado River at Lake Havasu, located approximately 23 24 44 mi (71 km) from the Riverside East SEZ. The aqueduct may support populations of non-25 native fish common to the lower Colorado River, including striped bass (Morone saxatilis), largemouth bass (Micropterus salmoides), carp (Cyprinus carpio), flathead catfish (Pylodictis 26 27 olivaris), channel catfish (Ictalurus punctatus), sunfish (Lepomis spp.), and tilapia (Tilapia spp.; 28 Mueller and Marsh 2002). Native fish are relatively rare in the lower Colorado River because of 29 overfishing, predation by non-native species, and human alteration of streams and rivers 30 (Mueller and Marsh 2002), and endangered species native to the Colorado River are not expected 31 to occur (see Section 9.4.12). Although aquatic organisms may be present in the CRA, periodic chlorination and draining used to control the population of the invasive quagga mussel 32 (Dreissena rostriformis bugensis) (USGS 2008a) makes the aqueduct unsuitable for aquatic 33 34 organisms. Palen Lake and Ford Dry Lake are the only water bodies present in the area of indirect effects. A total of approximately 3,516 acres (14 km²) and 460 acres (2 km²) of Palen 35 Lake and Ford Dry Lake, respectively, are located within the area of potential indirect effects. 36 37 Approximately 7,757 acres (31 km²) of wetlands is also located in the area of potential indirect 38 effects. As described above, Ford Dry Lake, Palen Lake, and associated wetlands are typically 39 dry but may support aquatic communities when water is present. 40

Outside of the potential indirect effects area, but within 50 mi (80 km) of the SEZ, there are several lake and reservoir habitats totaling approximately 62,143 acres (251 km²). Of this total, 15,998 acres (65 km²) is permanent lake (Salton Sea), 10,160 acres (41 km²) is intermittent lake, and 35,984 (146 km²) is dry lake. Dammed portions of the Colorado River are also present and total 51,004 acres (206 km²). There are also several stream features including 124 mi (200 km) of the CRA, 74 mi (119 km) of canals, and 168 mi (270 km) of intermittent streams. Within the SEZ and the area of potential indirect effects, intermittent lakes are the only surface
 water features present, representing approximately 46% of the amount of intermittent lake
 available within the overall analysis area.

9.4.11.4.2 Impacts

8 The types of impacts that could occur on aquatic habitats and biota from development 9 of utility-scale solar energy facilities are discussed in Section 5.10.2.4. Effects particularly 10 relevant to aquatic habitats and communities are water withdrawal and changes in water, 11 sediment, and contaminant inputs associated with runoff.

13 No permanent water bodies or streams are present within the boundaries of the Riverside East SEZ. Therefore, no direct impacts on these features are expected. The intermittent streams, 14 15 wetlands, and dry lakes present within the SEZ could be affected by ground disturbance and 16 runoff of water and sediment from the SEZ, especially if ground disturbance occurred near Palen 17 Lake and Ford Dry Lake (see Section 9.4.9). The intermittent streams, dry lakes, and associated 18 wetlands present in the SEZ are typically dry but may support aquatic communities on a seasonal 19 basis. More detailed site surveys of ephemeral and intermittent surface waters would be needed 20 to determine whether solar energy development activities would result in direct or indirect 21 impacts on aquatic biota. See Section 5.10.3 for a detailed description of potential impacts to 22 aquatic biota resulting from solar energy development activities. Avoiding intermittent surface 23 water features within the SEZ as well as the implementation of commonly used engineering practices to control water runoff and sediment deposition into surface water features would 24 25 minimize the potential for impacts on aquatic organisms.

26

5 6

7

12

The man-made CRA is within 5 mi (8 km) of the SEZ and could be indirectly affected by development and operation of solar energy facilities. Aquatic organisms present in these habitat features could be affected by airborne particulate deposition originating from the SEZ, especially if ground disturbance occurred along the SEZ's western boundary (Section 5.10.2.4). Runoff from the SEZ into the CRA would not occur, because the aqueduct is leveed, and natural drainage patterns would carry surface water away from the aqueduct.

33

34 As identified in Section 5.9, water quality in aquatic habitats could be affected by the 35 introduction of contaminants such as fuels, lubricants, or pesticides/herbicides during site characterization, construction, operation, or decommissioning for a solar energy facility. There is 36 37 the potential for contaminants from solar energy development activities within the SEZ to enter 38 McCoy Wash, Palen Lake, Ford Dry Lake, and wetlands within the SEZ, especially if heavy 39 machinery is used in or near these features. The aqueduct runs along the western border of the 40 Riverside East SEZ, but contamination from solar development activities in the SEZ would not occur, because it is leveed and natural drainage patterns would carry runoff away from the CRA. 41 42

In arid environments, reductions in the quantity of water in aquatic habitats are of
 particular concern. Water quantity in aquatic habitats could also be affected if significant
 amounts of surface water or groundwater were utilized for power plant cooling water, for
 washing mirrors, or for other needs. The greatest need for water would occur if technologies

2 associated impacts would ultimately depend on the water source used (including groundwater 3 from aquifers at various depths). As identified in Section 9.4.9.1.3, it seems unlikely that 4 approval could be obtained to withdraw water from the CRA. Nevertheless, the aqueduct itself is 5 poor habitat and supports no important aquatic species. Obtaining cooling water from other 6 perennial surface water features in the region could affect water levels and, as a consequence, 7 aquatic organisms in those water bodies. Additional details regarding the volume of water 8 required and the types of organisms present in potentially affected water bodies would be 9 required in order to further evaluate the potential for impacts from water withdrawals. 10 11 12 9.4.11.4.3 SEZ-Specific Design Features and Design Feature Effectiveness 13 14 The implementation of required programmatic design features described in Appendix A, 15 Section A.2.2, could greatly reduce or eliminate the potential for effects on aquatic biota and 16 aquatic habitats from development and operation of solar energy facilities. While some SEZspecific design features are best established when project details are being considered, a design 17 feature that can be identified at this time is as follows: 18 19 20 • Ground disturbance near McCoy Wash, Palen Lake, Ford Dry Lake and 21 wetlands should be avoided or minimized to the extent practicable. 22 23 If this design feature is implemented in addition to programmatic project design features

employing wet cooling, such as parabolic trough or power tower, were developed at the site; the

and if the utilization of water from groundwater or surface water sources is adequately controlled to maintain sufficient water levels in nearby aquatic habitats, the potential impacts on aquatic

26 biota and habitats from solar energy development at the Riverside East SEZ would be negligible.

1

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	This page intentionally left blank.
14	
15	

1	9.4.12 Spe	ecial Status Species (Inreatened, Endangered, Sensitive, and Rare Species)								
23	Thi	s section addresses special status species that are known to occur, or for which								
4	suitable ha	suitable habitat occurs, on or within the potentially affected area of the proposed Riverside East								
5	SEZ. Speci	ial status species include the following types of species: ⁵								
6	1									
7	•	Species listed as threatened or endangered under the ESA;								
8										
9	•	Species that are proposed for listing, under review, or are candidates for								
10		listing under the ESA;								
11										
12	•	Species that are listed as threatened or endangered by the State of California								
13		under the CESA, or that are identified as fully protected by the state ^o ;								
14 15	•	Species that are listed by the PLM as sensitive; and								
15	•	species that are listed by the BLW as sensitive, and								
17	•	Species that have been ranked by the states of California or Arizona as S1 or								
18		S2. or species of concern by the State of California or the USFWS: hereafter								
19		referred to as "rare" species. Arizona does not maintain a separate list of								
20		species of concern.								
21										
22	Spe	ecial status species known to occur within 50 mi (80 km) of the Riverside East SEZ								
23	center (i.e.,	, the SEZ region) were determined from natural heritage records available through								
24	NatureServ	ve Explorer (NatureServe 2010), information provided by the CDFG (2010c), CNDDB								
25	(CDFG 20	10b), CAReGAP (Davis et al. 1998, USGS 2010d), and SWReGAP (USGS 2004,								
26	2005, 2007). Information reviewed consisted of county-level occurrences as determined from								
21	NatureServ	types and predicted guitable behitters for the species within the 50 mi (80 km) region								
20 29	as determin	bed from CAReGAP and SWReGAP. The 50-mi (80-km) SEZ region intersects								
30	Imperial R	iverside and San Bernardino Counties California and La Paz and Yuma Counties								
31	Arizona. H	owever, the SEZ and affected area occur only in eastern Riverside County. California.								
32	See Appen	dix M for additional information on the approach used to identify species that could								
33	be affected	by development within the SEZ.								
34										
35										
36	9.4.	12.1 Affected Environment								
37										
38	The	e attected area considered in this assessment included the areas of direct and indirect								
39	effects. The	e area of direct effects was defined as the area that would be physically modified								
40	auring proj	ect development (i.e., where ground-disturbing activities would occur). For the								

. .

• . •

. .

~

.

.

0

during project development (i.e., where ground-disturbing activities would occur). For the

⁵ See Section 4.6.4 for definitions of these species categories. Note that some of the categories of species included here do not fit BLM's definition of special status species as defined in BLM Manual 6840 (BLM 2008c). These species are included here to ensure broad consideration of species that may be most vulnerable to impacts.

⁶ State-listed species are those listed as threatened or endangered under the CESA; California fully protected species are species that receive the strictest take provisions as identified by the CDFG.

1 Riverside East SEZ, the area of direct effect was limited to the SEZ itself. Because of the 2 proximity of existing infrastructure, the impacts of construction and operation of transmission 3 lines outside the SEZ are not assessed, assuming that the existing transmission infrastructure 4 might be used to connect some new solar facilities to load centers, and that additional project-5 specific analysis would be conducted for new transmission construction or line upgrades. 6 Similarly, the impacts of construction of or upgrades to access roads were not assessed for this 7 SEZ because of the proximity of State Route 62 (see Section 9.4.1.2 for a discussion of 8 development assumptions for this SEZ). The area of indirect effects was defined as the area 9 within 5 mi (8 km) of the SEZ boundary where ground-disturbing activities would not occur but 10 that could be indirectly affected by activities in the area of direct effect. Indirect effects considered in the assessment included effects from surface runoff, dust, noise, lighting, and 11 12 accidental spills from the SEZ, but do not include ground-disturbing activities. The potential 13 magnitude of indirect effects would decrease with increasing distance away from the SEZ. This 14 area of indirect effect was identified on the basis of professional judgment and was considered 15 sufficiently large to bound the area that would potentially be subject to indirect effects. The 16 affected area includes both the direct and indirect effects areas.

17

18 The primary habitat type within the affected area is Sonora-Mojave creosotebush-white 19 bursage desert scrub (see Section 9.4.10). Potentially unique habitats in the affected area in 20 which special status species may reside include desert dunes, cliffs and rock outcrops, desert 21 washes, playa habitats, and other aquatic habitats such as the CRA. Dry lake playas in the 22 affected area include Ford Dry Lake and Palen Lake. Palen Lake is located in the western portion 23 of the SEZ; Ford Lake is in the center of the SEZ. The CRA is located along the western border 24 of the SEZ (Figure 9.4.12.1-1). There are a number of desert washes on the SEZ that may 25 provide habitat for unique plant assemblages as identified in the Northern and Eastern Colorado 26 (NECO) Management Plan (BLM and CDFG 2002). 27

28 All special status species that are known to occur within the Riverside East SEZ region 29 (i.e., within 50 mi [80 km] of the center of the SEZ) are listed, with their status, nearest recorded 30 occurrence, and habitats, in Appendix J. Of these species, there are 69 that could be affected by 31 solar energy development within the SEZ, based on recorded occurrences or the presence of 32 potentially suitable habitat in the area. These species, their status, and their habitats are presented 33 in Table 9.4.12.1-1. For many of the species listed in the table, their predicted potential 34 occurrence in the affected area is based only on a general correspondence between mapped 35 CAReGAP land cover types and descriptions of species habitat preferences. This overall 36 approach to identifying species in the affected area probably overestimates the number of species 37 that actually occur in the affected area. For many of the species identified as having potentially 38 suitable habitat in the affected area, the nearest known occurrence is over 20 mi (32 m) away 39 from the SEZ.

40

Based on CNDDB records and information provided by the CDFG and USFWS, there are
29 special status species known to occur within the affected area of the Riverside East SEZ:
Abrams' spurge, bitter hymenoxys, California ditaxis, California satintail, desert spike-moss,
dwarf germander, Emory's crucifixion thorn, glandular ditaxis, Harwood's milkvetch, jackassclover, Orocopia sage, pink fairy-duster, spear-leaf matelea, Wiggins' cholla, California McCoy
snail, Bradley's cuckoo wasp, Riverside cuckoo wasp, desert tortoise, Bendire's thrasher, crissal

1 thrasher, western burrowing owl, Arizona myotis, California leaf-nosed bat, cave myotis,

2 Colorado Valley woodrat, Nelson's bighorn sheep, pallid bat, Townsend's big-eared bat, and

3 western mastiff bat. Of these species, the desert tortoise is listed as threatened under the ESA.

4 Nine of these species are listed as BLM-designated sensitive; the remaining 19 species are

considered rare. Designated critical habitat for the desert tortoise occurs within the affected area
 in the Chuckwalla DWMA adjacent to the southern boundary of the SEZ. There are no

o in the Chuckwalla DWMA adjacent to the southern boundary of the SEZ. There are no

7 groundwater-dependent species in the vicinity of the SEZ based upon CNDDB records,

8 comments provided by the USFWS (Stout 2009), and the evaluation of groundwater resources in

9 the Riverside East SEZ region (Section 9.4.9).

10 11

12

13

14

9.4.12.1.1 Species Listed under the Endangered Species Act That Could Occur in the Affected Area

15 There is one species listed under the ESA that may occur in the affected area of the 16 Riverside East SEZ: the desert tortoise. The Mojave population of the desert tortoise, which 17 includes all populations in California, is listed as a threatened species under the ESA. The desert tortoise is also listed as a threatened species under the CESA. This species is discussed below; 18 19 additional basic information on life history, habitat needs, and threats to populations of this 20 species is provided in Appendix J. CNDDB records indicate disjunct occurrences of the 21 Coachella Valley milkvetch in the Chuckwalla Valley within the affected area of the SEZ. The Coachella Valley milkvetch is listed as endangered under the ESA. However, the USFWS has 22 23 confirmed that those occurrences do not belong to the Coachella Valley milkvetch; the nearest 24 known occurrences of this species are from the Coachella Valley, approximately 45 mi (72 km) 25 west of the SEZ. It is unlikely for the Coachella Valley milkvetch to occur in the affected area of 26 the Riverside East SEZ.

27

In scoping comments on the Riverside East SEZ, the USFWS expressed concern for impacts of solar facilities within the SEZ on the desert tortoise (Stout 2009). This species has the potential to occur within the SEZ based on observed occurrences on and near the SEZ, the presence of designated critical habitat within the area of indirect effects, and the presence of potentially suitable habitat in the SEZ (Figure 9.4.12.1-1; Table 9.4.12.1-1).

33

34 The desert tortoise occurs in Joshua Tree NP and the Chuckwalla DWMA, which are 35 adjacent to the western and southern boundary of the proposed Riverside East SEZ. In 2007, surveys for desert tortoises conducted by the USFWS Desert Tortoise Recovery Office indicated 36 a desert tortoise density of about 3.5 and 5.0 individuals/km² within Joshua Tree NP and the 37 38 Chuckwalla DWMA, respectively (Stout 2009). Because the SEZ exists at lower elevations, 39 desert tortoise densities within the SEZ are likely lower than those within the surrounding 40 DWMAs. The SEZ also shares greater connectivity with the Pinto Basin near the Joshua Tree NP. For these reasons, the USFWS used the lower density estimate from the Joshua Tree NP 41 42 (3.5 individuals/km²) to estimate that the SEZ may support up to 2,865 desert tortoises. 43

CNDDB records desert tortoises located within the eastern and western portions of the
 SEZ (Figure 9.4.12.1-1). According to the CAReGAP habitat suitability model, potentially
 suitable habitat for the species occurs throughout the majority of the SEZ and the area of indirect

FIGURE 9.4.12.1-1 Known or Potential Occurrences of Species Listed as Endangered or Threatened under the ESA That May Occur in the Proposed Riverside East SEZ Affected Area (Sources: CDFG 2010b; Davis et al. 1998, 2007)

Common Name		entific Listing Jame Status ^a	Habitat ^b	Maximum Area of Potential Habitat Affected ^c		Overall Potential
	Scientific Name			Within SEZ (Direct Effects) ^d	Outside SEZ (Indirect Effects) ^e	Impact Magnitude ^f and Species-Specific Mitigation ^g
<i>Plants</i> Abrams' spurge	Chamaesyce abramsiana	CA-S1	Sandy substrates within creosotebush scrub communities in the Mojave and Sonoran Deserts at elevations below 3,000 ft. ^h Known to occur in the affected area. Nearest recorded occurrence is from the Chuckwalla DWMA, about 1 mi south of the SEZ. About 2,215,155 acres ⁱ of potentially suitable habitat occurs within the SEZ region.	109,933 acres of potentially suitable habitat lost (5.0% of available suitable habitat)	229,999 acres of potentially suitable habitat (10.4% of available potentially suitable habitat)	Moderate overall impact. Pre-disturbance surveys and avoiding or minimizing disturbance of occupied habitats on the SEZ; translocation of individuals from areas of direct effect; or compensatory mitigation of direct effects on occupied habitats could reduce impacts. Note that these potential mitigations apply to all special status plants.
Alkali mariposa-lily	Calochortus striatus	BLM-S; CA-S2;	Alkaline seeps, springs, and meadows at elevations between 2,600 and 4,600 ft. Nearest	1,570 acres of potentially suitable	828 acres of potentially suitable	Moderate overall impact. Avoiding or

recorded occurrences are 40 mi west of the SEZ. About 68,658 acres of potentially suitable habitat

occurs within the SEZ region.

habitat lost (2.3%

suitable habitat)

of available

habitat (1.2% of

potentially suitable

available

habitat)

minimizing disturbance

to desert playa habitat

on the SEZ could

reduce impacts. See

Abrams' spurge for a list of potential

mitigations applicable to all special status plant species.

FWS-SC

TABLE 9.4.12.1-1Habitats, Potential Impacts, and Potential Mitigation for Special Status Species That Could Be Affected by SolarEnergy Development on the Proposed Riverside East SEZ

				Maximum Area of Potential Habitat Affected ^c		Overall Potential
Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Within SEZ (Direct Effects) ^d	Outside SEZ (Indirect Effects) ^e	Impact Magnitude ¹ and Species-Specific Mitigation ^g
<i>Plants (Cont.)</i> Bitter hymenoxys ^j	Hymenoxys odorata	CA-S2	Sandy substrates within riparian and Sonoran Desert scrub communities, also within open flats, mesquite flats, ditches and drainage areas, and along roads and streams. Elevation ranges between 150 and 500 ft. Known to occur in the affected area. Nearest recorded occurrences are 5 mi east of the SEZ. About 2,657,966 acres of potentially suitable habitat occurs within the SEZ region.	138,283 acres of potentially suitable habitat lost (5.2% of available suitable habitat)	324,557 acres of potentially suitable habitat (12.2% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
California ditaxis	Ditaxis serrata var. californica	CA-S2	Sonoran Desert scrub and creosotebush scrub communities at elevations between 100 and 3,300 ft. Known to occur in the affected area. Nearest recorded occurrence is near the CRA, approximately 2 mi west of the SEZ. About 2,514,766 acres of potentially suitable habitat occurs within the SEZ region.	111,496 acres of potentially suitable habitat lost (4.4% of available suitable habitat)	235,102 acres of potentially suitable habitat (9.3% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
California satintail	Imperata brevifolia	CA-S2	Chaparral, coastal sage scrub, creosotebush, desert scrub, mesic riparian scrub, and alkaline meadow and seep communities. Elevation ranges between 0 and 1,650 ft. Known to occur in the affected area. Nearest recorded occurrences are 5 mi east of the SEZ. About 2,526,349 acres of potentially suitable habitat occurs within the SEZ region.	111,496 acres of potentially suitable habitat lost (4.4% of available suitable habitat)	235,350 acres of potentially suitable habitat (9.3% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
	Scientific	Listing		Maximum Area of Potential Habitat Affected ^c		Overall Potential Impact Magnitude ^f and Species-Specific
---------------------------	--------------------------------	---------------------	--	---	---	---
Common Name	Name	Status ^a	Habitat ^b	(Direct Effects) ^d	(Indirect Effects) ^e	Mitigation ^g
Plants (Cont.)						
California saw-grass	Cladium californicum	CA-S2	Alkaline, freshwater, and riparian habitats including meadows, marshes, swamps, and seeps. Elevation ranges between 200 and 2,000 ft. Nearest recorded occurrence is from the vicinity of the Salton Sea, approximately 30 mi southwest of the SEZ. About 117,240 acres of potentially suitable habitat occurs within the SEZ region.	1,793 acres of potentially suitable habitat lost (1.5% of available suitable habitat)	1,162 acres of potentially suitable habitat (1.0% of available potentially suitable habitat)	Moderate overall impact. Avoiding or minimizing disturbance to desert playa and wash habitats on the SEZ could reduce impacts. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
Chaparral sand-verbena	Abronia villosa var. aurita	BLM-S; CA-S2	Endemic to southern California. Inhabits chaparral desert sand dunes at elevations between 350 and 5,250 ft. Historically occurred on and in the vicinity of the SEZ; the species has not been recorded in the project area since 1964. Most recent recorded occurrences are 23 mi from the SEZ. About 84,357 acres of potentially suitable habitat occurs within the SEZ region.	26,798 acres of potentially suitable habitat lost (31.8% of available suitable habitat)	15,987 acres of potentially suitable habitat (19.0% of available potentially suitable habitat)	Large overall impact. Avoiding or minimizing disturbance to desert dunes and sand transport systems on the SEZ could reduce impacts. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.

				Maximum Area of Potential Habitat Affected ^c		Overall Potential	
Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Within SEZ (Direct Effects) ^d	Outside SEZ (Indirect Effects) ^e	Impact Magnitude ^t and Species-Specific Mitigation ^g	
<i>Plants (Cont.)</i> Coves' cassia	Senna covesii	CA-S2	Sonoran Desert dry washes and slopes with sandy substrates within desert scrub and creosotebush scrub communities. Elevation ranges between 1,000 and 3,500 ft. Nearest recorded occurrence is 15 mi from the SEZ. About 3,164,051 acres of potentially suitable habitat occurs within the SEZ region.	136,472 acres of potentially suitable habitat lost (4.3% of available suitable habitat)	314,674 acres of potentially suitable habitat (9.9% of available potentially suitable habitat)	Moderate overall impact. Avoiding or minimizing disturbance to desert wash habitats on the SEZ could reduce impacts. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.	
Creamy blazing star	Mentzelia tridentata	BLM-S; CA-S2	Mojave desert creosotebush scrub communities on rocky and sandy substrates at elevations below 3,900 ft. Nearest recorded occurrences are 45 mi west of the SEZ. About 2,215,155 acres of potentially suitable habitat occurs within the SEZ region.	109,933 acres of potentially suitable habitat lost (5.0% of available suitable habitat)	229,999 acres of potentially suitable habitat (10.4% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.	
Desert pincushion	Coryphantha chlorantha	CA-S1	Gravelly bajadas, limestone, or dolomite rocky slopes associated with desert scrub communities within pinyon-juniper woodlands and Joshua tree woodlands. Elevation ranges between 148 and 7,875 ft. Nearest recorded occurrence is 30 mi from the SEZ. About 2,526,161 acres of potentially suitable habitat occurs within the SEZ region.	111,496 acres of potentially suitable habitat lost (4.4% of available suitable habitat)	235,350 acres of potentially suitable habitat (9.3% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.	

				Maximum Area of Potential Habitat Affected ^c		Overall Potential
Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Within SEZ (Direct Effects) ^d	Outside SEZ (Indirect Effects) ^e	Species-Specific Mitigation ^g
<i>Plants (Cont.)</i> Desert spike-moss	Selaginella eremophila	CA-S2	Gravelly or rocky slopes within creosotebush scrub and Sonoran desert scrub communities. Elevation ranges between 650 and 2,950 ft. Known to occur in the affected area. Nearest recorded occurrence is 5 mi south of the SEZ. About 2,514,766 acres of potentially suitable habitat occurs within the SEZ region.	111,496 acres of potentially suitable habitat lost (4.4% of available suitable habitat)	235,102 acres of potentially suitable habitat (9.3% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
Dwarf germander	Teucrium cubense ssp. depressum	CA-S2	Desert dunes, playas, riparian, creosotebush scrub, and desert scrub communities. Elevation ranges between 150 and 1,300 ft. Known to occur in the affected area. Nearest recorded occurrence is from the Chuckwalla DWMA, about 1 mi south of the SEZ. About 2,727,570 acres of potentially suitable habitat occurs within the SEZ region.	140,087 acres of potentially suitable habitat lost (5.1% of available suitable habitat)	252,499 acres of potentially suitable habitat (9.3% of available potentially suitable habitat)	Moderate overall impact. Avoiding or minimizing disturbance to playas and desert dunes and sand transport systems could reduce impacts. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
Emory's crucifixion- thorn	Castela emoryi	CA-S2	Slightly wet alluvial bottomlands associated with basalt flows within Mojave Desert scrub, non- saline playas, creosotebush scrub, and Sonoran Desert scrub communities. Elevation ranges between 295 and 2,200 ft. Known to occur in the affected area. Nearest recorded occurrence is about 1 mi from the western portion of the SEZ. About 2,594,668 acres of potentially suitable habitat occurs within the SEZ region.	113,066 acres of potentially suitable habitat lost (4.4% of available suitable habitat)	236,178 acres of potentially suitable habitat (9.1% of available potentially suitable habitat)	Moderate overall impact. Avoiding or minimizing disturbance to playas could reduce impacts. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.

	Scientific	Listing		Maximum Area o Affe Within SEZ	f Potential Habitat cted ^c Outside SEZ	Overall Potential Impact Magnitude ^f and Species-Specific
Common Name	Name	Status ^a	Habitat ^o	(Direct Effects) ^d	(Indirect Effects) ^e	Mitigation ^g
<i>Plants (Cont.)</i> Giant spanish- needle	Palafoxia arida var. gigantea	BLM-S; CA-S1	Desert sand dune habitats at elevations below 330 ft. Nearest recorded occurrences are 40 mi south of the SEZ. Suitable habitat may exist on the site. About 84,168 acres of potentially suitable habitat occurs within the SEZ region.	26,798 acres of potentially suitable habitat lost (31.8% of available suitable habitat)	15,987 acres of potentially suitable habitat (19.0% of available potentially suitable habitat)	Large overall impact. Avoiding or minimizing disturbance to desert dunes and sand transport systems on the SEZ could reduce impacts. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
Glandular ditaxis	Ditaxis claryana	CA-S1	Sandy substrates within desert scrub communities at elevations below 1,525 ft. Known to occur in the affected area. Nearest recorded occurrence is from the Chuckwalla DWMA, approximately 2 mi south of the SEZ. About 2,526,160 acres of potentially suitable habitat occurs within the SEZ region.	111,496 acres of potentially suitable habitat lost (4.4% of available suitable habitat)	235,350 acres of potentially suitable habitat (9.3% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
Harwood's eriastrum	Eriastrum harwoodii	BLM-S; CA-S2	Known from fewer than 20 occurrences in southern California on desert dunes and other sandy habitats at elevations between 650 and 3,000 ft. Nearest recorded occurrence is 15 mi northwest of the SEZ in the Pinto Mountains DWMA. About 84,168 acres of potentially suitable habitat occurs within the SEZ region.	26,798 acres of potentially suitable habitat lost (31.8% of available suitable habitat)	15,987 acres of potentially suitable habitat (19.0% of available potentially suitable habitat)	Large overall impact. Avoiding or minimizing disturbance to dunes and sand transport systems could reduce impacts. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.

				Maximum Area of Potential Habitat Affected ^c		Overall Potential	
Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Within SEZ (Direct Effects) ^d	Outside SEZ (Indirect Effects) ^e	Impact Magnitude ^f and Species-Specific Mitigation ^g	
<i>Plants (Cont.)</i> Harwood's milkvetch	Astragalus insularis var. harwoodii	CA-S2	Sonoran Desert of Arizona and California on sandy or gravelly substrates of desert dunes within desert scrub communities. Elevation ranges between 0 and 2,325 ft. Known to occur on the SEZ and in other portions of the affected area. About 2,610,178 acres of potentially suitable habitat occurs within the SEZ region.	138,294 acres of potentially suitable habitat lost (5.3% of available suitable habitat)	251,337 acres of potentially suitable habitat (9.6% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.	
Jackass- clover	Wislizenia refracta ssp. refracta	CA-S1	Mojave and northern Sonoran Deserts in dunes, sandy washes, roadsides, and playas within creosotebush scrub, alkali sink, or desert scrub communities. Elevation ranges between 2,000 and 2,600 ft. Known to occur in wash habitats in the western portion of the SEZ near Palen Lake. About 813,288 acres of potentially suitable habitat occurs within the SEZ region.	53,991 acres of potentially suitable habitat lost (6.6% of available suitable habitat)	99,483 acres of potentially suitable habitat (12.2% of available potentially suitable habitat)	Moderate overall impact. Avoiding or minimizing disturbance to dunes and sand transport systems, playas, or washes could reduce impacts. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.	
Latimer's woodland- gilia	Saltugilia latimeri	BLM-S; CA-S2	Mojave Desert scrub communities, pinyon-juniper woodlands, and washes on rocky or sandy substrates at elevations between 1,300 and 6,500 ft. Nearest recorded occurrence is 30 mi west of the SEZ. About 2,920,277 acres of potentially suitable habitat occurs within the SEZ region.	136,472 acres of potentially suitable habitat lost (4.7% of available suitable habitat)	314,674 acres of potentially suitable habitat (10.8% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.	

	Maximum Area of Potential H Affected ^c		f Potential Habitat ccted ^c	t Overall Potential		
Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Within SEZ (Direct Effects) ^d	Outside SEZ (Indirect Effects) ^e	Impact Magnitude ¹ and Species-Specific Mitigation ^g
<i>Plants (Cont.)</i> Little San Bernardino Mountains linanthus	Linanthus maculatus	BLM-S; CA-S1	Known from fewer than 20 occurrences in southern California near Joshua Tree National Park in desert dunes and sandy flats with creosotebush scrub and Joshua tree woodland communities at elevations less than 6,900 ft. Nearest recorded occurrences are 30 mi west of the SEZ. About 84,168 acres of potentially suitable habitat occurs within the SEZ region.	26,798 acres of potentially suitable habitat lost (31.8% of available suitable habitat)	15,987 acres of potentially suitable habitat (19.0% of available potentially suitable habitat)	Large overall impact. Avoiding or minimizing disturbance to dunes and sand transport systems on the SEZ could reduce impacts. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
Lobed ground- cherry	Physalis lobata	CA-S1	Known from the northeastern Sonoran and southeastern Mojave Deserts in decomposed granitic substrates within creosotebush scrub, alkali sink, desert scrub, and playas communities. Elevation ranges between 1,650 and 2,600 ft. Nearest recorded occurrences are 20 mi northwest of the SEZ. About 2,594,668 acres of potentially suitable habitat occurs within the SEZ region.	113,066 acres of potentially suitable habitat lost (4.4% of available suitable habitat)	236,178 acres of potentially suitable habitat (9.1% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
Munz's cholla	Opuntia munzii	BLM-S; CA-S1	Gravelly or sandy to rocky soils, often on lower bajadas, washes, flats, hills and canyon sides in Sonoran Desert creosotebush shrub communities at elevations below 3,280 ft. Nearest recorded occurrences are from the Chuckwalla DWMA, approximately 20 mi south of the SEZ. About 4,187,934 acres of potentially suitable habitat occurs within the SEZ region.	171,716 acres of potentially suitable habitat lost (4.1% of available suitable habitat)	570,180 acres of potentially suitable habitat (13.6% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.

	Scientific	Listing	ar e c h	Maximum Area o Affe	f Potential Habitat	Overall Potential Impact Magnitude ^f and Species-Specific
Common Name	Name	Status ^a	Habitat ^o	(Direct Effects) ^u	(Indirect Effects) ^e	Mitigation ^g
Plants (Cont.)						
Narrow-leaved psorothamnus	Psorothamnus fremontii var. attenuatus	CA-S2	Volcanic substrates of slopes, flats, and canyons within Sonoran Desert scrub communities at elevations between 1,100 and 3,000 ft. Nearest recorded occurrences are from the vicinity of the Whipple Mountains, approximately 32 mi northeast of the SEZ. About 2,863,434 acres of potentially suitable habitat occurs within the SEZ region.	141,075 acres of potentially suitable habitat lost (4.9% of available suitable habitat)	370,466 acres of potentially suitable habitat (12.9% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
Orocopia sage	Salvia greatae	BLM-S; CA-S2	Creosotebush scrub communities and dry washes at elevations less than 2,600 ft. Known to occur in the affected area. Nearest occurrences are from the Chuckwalla DWMA about 2 mi south of the SEZ. About 2,853,196 acres of potentially suitable habitat occurs within the SEZ region.	134,909 acres of potentially suitable habitat lost (4.7% of available suitable habitat)	309,323 acres of potentially suitable habitat (10.8% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
Parish's club- cholla	Grusonia parishii	CA-S2	Silty, sandy, or gravelly flats, dunelets, and hills within Joshua tree woodlands, creosotebush scrub, and desert scrub communities. Elevation ranges between 100 and 5,000 ft. Nearest recorded occurrences are 10 mi west of the SEZ. About 2,995,669 acres of potentially suitable habitat occurs within the SEZ region.	169,461 acres of potentially suitable habitat lost (5.7% of available suitable habitat)	396,498 acres of potentially suitable habitat (13.2% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
Pink fairy- duster	Calliandra eriophylla	CA-S2	Sandy or rocky substrates in creosote and desert scrub communities. Elevation ranges between 390 and 4,900 ft. Known to occur in the affected area. The species is known to occur in habitats along I-10 about 0.5 mi south of the SEZ. About 2,526,160 acres of potentially suitable habitat occurs within the SEZ region.	111,496 acres of potentially suitable habitat lost (4.4% of available suitable habitat)	235,350 acres of potentially suitable habitat (9.3% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.

				Maximum Area o Affe	Overall Potential	
Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Within SEZ (Direct Effects) ^d	Outside SEZ (Indirect Effects) ^e	Impact Magnitude ¹ and Species-Specific Mitigation ^g
Plants (Cont.)						
Purple-nerve cymopterus	Cymopterus multinervatus	CA-S2	Sandy or gravelly slopes within desert scrub, Joshua tree woodland, and pinyon-juniper woodland communities. Elevation ranges between 2,600 and 5,900 ft. Nearest recorded occurrences are from San Bernardino County, California, approximately 40 mi northwest of the SEZ. About 2,526,160 acres of potentially suitable habitat occurs within the SEZ region.	111,496 acres of potentially suitable habitat lost (4.4% of available suitable habitat)	235,350 acres of potentially suitable habitat (9.3% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
Saguaro cactus	Carnegiea gigantea	CA-S1	Endemic to the Sonoran Desert along the Colorado River from the Whipple Mountains to Laguna Dam. Rocky substrates within Sonoran desert scrub and creosotescrub communities at elevations between 160 and 4,900 ft. Nearest recorded occurrence is from the Palo Verde Mountains WA, approximately 10 mi south of the SEZ. About 2,863,434 acres of potentially suitable habitat occurs within the SEZ region.	141,075 acres of potentially suitable habitat lost (4.9% of available suitable habitat)	370,466 acres of potentially suitable habitat (12.9% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
Salt Spring checkerbloom	Sidalcea neomexicana	CA-S2	Alkaline or mesic substrates within riparian wetlands, marshes, springs, chaparral, coastal scrub, coniferous forest, desert scrub, and playas habitats. Elevation ranges between 50 and 5,000 ft. Nearest recorded occurrences are approximately 40 mi northwest of the SEZ. About 2,643,589 acres of potentially suitable habitat occurs within the SEZ region.	113,289 acres of potentially suitable habitat lost (4.3% of available suitable habitat)	236,512 acres of potentially suitable habitat (8.9% of available potentially suitable habitat)	Moderate overall impact. Avoiding or minimizing disturbance to desert playa and wash habitats on the SEZ could reduce impacts. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.

				Maximum Area of Potential Habitat Affected ^c		Overall Potential	
Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Within SEZ (Direct Effects) ^d	Outside SEZ (Indirect Effects) ^e	Impact Magnitude ¹ and Species-Specific Mitigation ^g	
Plants (Cont)							
Sand evening- primrose	Camissonia arenaria	CA-S2	Sandy washes and rocky slopes within Sonoran desert scrub communities at elevations below 3,000 ft. Nearest recorded occurrence is 13 mi south of the SEZ in the Chuckwalla DWMA. About 3,501,475 acres of potentially suitable habitat occurs within the SEZ region.	166,051 acres of potentially suitable habitat lost (4.7% of available suitable habitat)	449,790 acres of potentially suitable habitat (12.8% of available potentially suitable habitat)	Moderate overall impact. Avoiding or minimizing disturbance to desert wash habitats on the SEZ could reduce impacts. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.	
Slender cottonheads	Nemacaulis denudata var. gracilis	CA-S2	Southern California within the Mojave and Sonoran Deserts on sandy soils within coastal dunes, desert dunes, creosotebush scrub, and desert scrub communities at elevations below 1,300 ft. Nearest recorded occurrences are 40 mi west of the SEZ. About 1,786,349 acres of potentially suitable habitat occurs within the SEZ region.	138,294 acres of potentially suitable habitat lost (7.7% of available suitable habitat)	251,337 acres of potentially suitable habitat (14.1% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.	
Small-flowered androstephium	Androstephium breviflorum	CA-S1	Dry sandy to rocky soil substrates in desert dunes within creosotebush scrub and Mojavean desert scrub at elevations between 720 and 2,100 ft. Nearest occurrences are approximately 10 mi north of the SEZ. About 2,715,222 acres of potentially suitable habitat occurs within the SEZ region.	167,873 acres of potentially suitable habitat lost (6.2% of available suitable habitat)	386,701 acres of potentially suitable habitat (14.2% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.	

				Maximum Area of Potential Habitat Affected ^c		Overall Potential
Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Within SEZ (Direct Effects) ^d	Outside SEZ (Indirect Effects) ^e	Species-Specific Mitigation ^g
<i>Plants (Cont.)</i> Spear-leaf matelea	Matelea parvifolia	CA-S2	Endemic to southeastern California on rocky substrates within creosotebush and desert scrub communities at elevations between 1,450 and 3,600 ft. Known to occur in the affected area. Nearest recorded occurrences are 5 mi south of the SEZ in the Chuckwalla DWMA. About 2,526,160 acres of potentially suitable habitat occurs within the SEZ region.	111,496 acres of potentially suitable habitat lost (4.4% of available suitable habitat)	235,350 acres of potentially suitable habitat (9.3% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
Thorny milkwort	Polygala acanthoclada	CA-S2	Loose, sandy or gravelly slopes within shadscale scrub, chenopod scrub, Joshua tree woodland, and pinyon-juniper woodland communities at elevations between 2,500 and 7,500 ft. Nearest recorded occurrences are 25 mi west of the SEZ. About 2,526,161 acres of potentially suitable habitat occurs within the SEZ region.	111,496 acres of potentially suitable habitat lost (4.4% of available suitable habitat)	235,350 acres of potentially suitable habitat (9.3% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
Three-awned grama	Bouteloua trifida	CA-S2	Eastern Mojave Desert mountains on dry, rocky, often calcareous slopes within desert scrub communities. Elevation ranges between 2,300 and 6,500 ft. Nearest recorded occurrence is 40 mi north of the SEZ. About 2,282,236 acres of potentially suitable habitat occurs within the SEZ region.	111,496 acres of potentially suitable habitat lost (4.9% of available suitable habitat)	235,350 acres of potentially suitable habitat (10.3% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
White- margined beardtongue	Penstemon albomarginatus	BLM-S; CA-S1; FWS-SC	Desert sand dune habitats and Mojave Desert scrub communities at elevations below 3,600 ft. Nearest recorded occurrences are 50 mi north of the SEZ. About 2,366,404 acres of potentially suitable habitat occurs within the SEZ region.	138,294 acres of potentially suitable habitat lost (5.8% of available suitable habitat)	251,337 acres of potentially suitable habitat (10.6% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.

	Scientific	Listing	11 1 1 1 1	Maximum Area o Affe Within SEZ	f Potential Habitat	Overall Potential Impact Magnitude ^f and Species-Specific
Common Name	Name	Status	Habitat	(Direct Effects) ^a	(Indirect Effects)	Mitigations
Plants (Cont.) Wiggins' cholla	Opuntia wigginsii	CA-S1	Sandy substrates of small washes and flats within creosotebush scrub and Sonoran Desert scrub communities. Elevation ranges between 100 and 2,900 ft. Known to occur in the affected area. Nearest recorded occurrences are approximately 5 mi south of the SEZ. About 2,909,226 acres of potentially suitable habitat occurs within the SEZ region.	136,472 acres of potentially suitable habitat lost (4.7% of available suitable habitat)	314,426 acres of potentially suitable habitat (10.8% of available potentially suitable habitat)	Moderate overall impact. See Abrams' spurge for a list of potential mitigations applicable to all special status plant species.
<i>Mollusks</i> California McCoy snail	Eremarionta rowelli mccoiana	CA-S1	Known only from Riverside County, California within an area less than 40 mi ² near the southern Palen/McCoy Wilderness. Lives terrestrially among rocks on talus slopes. Known to occur in the affected area. Nearest occurrences are from the Palen/McCoy Mountains within 1 mi north of the SEZ. About 949,247 acres of potentially suitable habitat occurs within the SEZ region.	5,640 acres of potentially suitable habitat lost (0.6% of available suitable habitat)	115,696 acres of potentially suitable habitat (12.2% of available potentially suitable habitat)	Small overall impact. Pre-disturbance surveys and avoiding or minimizing disturbance to occupied habitats on the SEZ or compensatory mitigation of direct effects on occupied habitats could reduce impacts.

				Maximum Area of Potential Habitat Affected ^c		_ Overall Potential Impact Magnitude ^f and
Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Within SEZ (Direct Effects) ^d	Outside SEZ (Indirect Effects) ^e	Species-Specific Mitigation ^g
<i>Arthropods</i> Bradley's cuckoo wasp	Ceratochrysis bradleyi	CA-S1	Endemic to California where it is known only from eastern Riverside County in Sonoran Desert scrub, creosote-scrub, yucca and cholla cactus, saltbush, and desert dune communities. Known to occur in the affected area. Nearest recorded occurrence is 2 mi east of the SEZ. About 2,610,178 acres of potentially suitable habitat occurs within the SEZ region.	138,294 acres of potentially suitable habitat lost (5.3% of available suitable habitat)	251,337 acres of potentially suitable habitat (9.6% of available potentially suitable habitat)	Moderate overall impact. Pre-disturbance surveys and avoiding or minimizing disturbance to occupied habitats on the SEZ or compensatory mitigation of direct effects on occupied habitats could reduce impacts.
Cheeseweed owlfly	Oliarces clara	CA-S1; FWS-SC	Colorado River drainage of southwestern Arizona and southern California within creosote-scrub communities on or near bajadas at elevations below 330 ft. Nearest recorded occurrence is 10 mi north of the SEZ. About 2,215,155 acres of potentially suitable habitat occurs within the SEZ region.	109,933 acres of potentially suitable habitat lost (5.0% of available suitable habitat)	229,999 acres of potentially suitable habitat (10.4% of available potentially suitable habitat)	Moderate overall impact. Pre-disturbance surveys and avoiding or minimizing disturbance to occupied habitats on the SEZ or compensatory mitigation of direct effects on occupied habitats could reduce impacts.

				Maximum Area of Potential Habitat Affected ^c		Overall Potential
Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Within SEZ (Direct Effects) ^d	Outside SEZ (Indirect Effects) ^e	Impact Magnitude ¹ and Species-Specific Mitigation ^g
Arthropods (Cont.)						
Riverside cuckoo wasp	Hedychridium argenteum	CA-S1	Endemic to California where it is known only from eastern Riverside County in Sonoran Desert scrub, creosotebush scrub, yucca and cholla cactus, saltbush, and desert dune communities. The only known CNDDB occurrence for this species is within the SEZ near the southern border of the SEZ. About 2,610,178 acres of potentially suitable habitat occurs within the SEZ region.	138,294 acres of potentially suitable habitat lost (5.3% of available suitable habitat)	251,337 acres of potentially suitable habitat (9.6% of available potentially suitable habitat)	Moderate overall impact. Pre-disturbance surveys and avoiding or minimizing disturbance to occupied habitats on the SEZ or compensatory mitigation of direct effects on occupied habitats could reduce impacts.
Roberts' rhopalolemma bee	Rhopalolemma robertsi	CA-S1	Endemic to southern California from desert wash habitats in southern San Bernardino County. Nearest recorded occurrences are 35 mi west of the SEZ. About 637,257 acres of potentially suitable habitat occurs within the SEZ region.	24,976 acres of potentially suitable habitat lost (3.9% of available suitable habitat)	79,324 acres of potentially suitable habitat (12.4% of available potentially suitable habitat)	Moderate overall impact. Pre-disturbance surveys and avoiding or minimizing disturbance to occupied habitats on the SEZ or compensatory mitigation of direct effects on occupied habitats could reduce impacts.

	Scientific	Listing		Maximum Area of Potential Habitat Affected ^e		_ Overall Potential Impact Magnitude ^f and Species-Specific
Common Name	Name	Status ^a	Habitat ^b	(Direct Effects) ^d	(Indirect Effects) ^e	Mitigation ^g
<i>Amphibians</i> Couch's	Scaphiopus	CA-S2;	Scattered populations east of the Algodones	20,880 acres of	62,922 acres of	Moderate overall
spadefoot	couchii	CA-SC	Mountains north along the Colorado River in wetland habitats that include temporary pools, ponds, and puddles. Often occurs in arid and semiarid shrublands, shortgrass plains, mesquite savanna, creosotebush, thorn forest, and cultivated areas. Elevation ranges between 690 and 1,120 ft. Nearest recorded occurrences are 6 mi southeast of the SEZ. About 424,690 acres of potentially suitable habitat occurs within the SEZ region.	potentially suitable habitat lost (4.9% of available suitable habitat)	potentially suitable habitat (14.8% of available potentially suitable habitat)	impact. Pre-disturbance surveys and avoiding or minimizing disturbance to occupied habitats on the SEZ or compensatory mitigation of direct effects on occupied habitats could reduce impacts.
Reptiles						
Desert tortoise	Gopherus agassizii	ESA-T; CA-T; CA-S2;	Mojave and Sonoran Deserts in desert creosote bush communities on firm soils for digging burrows, along riverbanks, washes, canyon bottoms, creosote flats, and desert oases. Known to occur on the SEZ (western and northeastern portions) and in the affected area. About 4,205,025 acres of potentially suitable habitat occurs within the SEZ region.	185,274 acres of potentially suitable habitat lost (4.4% of available suitable habitat)	542,622 acres of potentially suitable habitat (12.9% of available potentially suitable habitat)	Moderate overall impact. Pre-disturbance surveys and avoiding or minimizing disturbance to occupied habitats on the SEZ, translocation of individuals from areas of direct effect, or compensatory mitigation of direct effects on occupied habitats could reduce impacts. The potential for impact and need for mitigation should be determined in consultation with the USFWS and CDFG.

				Maximum Area o Affe	Overall Potential	
Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Within SEZ (Direct Effects) ^d	Outside SEZ (Indirect Effects) ^e	Impact Magnitude ^f and Species-Specific Mitigation ^g
Reptiles (Cont.) Mojave fringe- toed lizard	Uma scoparia	BLM-S; CA-SC	Sandy habitats in the Mojave Desert from Death Valley south to the Colorado River near Blythe, California and extreme western Arizona. Sparsely- vegetated desert areas with fine wind-blown sand, including dunes, flats, and washes at elevations below 3,000 ft. Nearest recorded occurrences are 25 mi north of the SEZ. About 1,840,628 acres of potentially suitable habitat occurs within the SEZ region.	140,506 acres of potentially suitable habitat lost (7.6% of available suitable habitat)	380,038 acres of potentially suitable habitat (20.6% of available potentially suitable habitat)	Moderate overall impact. Avoiding or minimizing disturbance of desert dunes and sand transport systems or washes could reduce impacts. In addition, pre-disturbance surveys and avoiding or minimizing disturbance of occupied habitats on the SEZ or compensatory mitigation of direct effects could reduce impacts.
Rosy boa	Charina trivirgata	BLM-S; FWS-SC	Southeastern California and western Arizona in scrublands, rocky deserts, and canyons with permanent or intermittent streams. Nearest recorded occurrences are from Joshua Tree NP, approximately 25 mi west of the SEZ. About 4,171,153 acres of potentially suitable habitat occurs within the SEZ region.	185,274 acres of potentially suitable habitat lost (4.4% of available suitable habitat)	544,126 acres of potentially suitable habitat (13.0% of available potentially suitable habitat)	Moderate overall impact. Pre-disturbance surveys and avoiding or minimizing disturbance to occupied habitats on the SEZ, translocation of individuals from areas of direct effect, or compensatory mitigation of direct effects on occupied habitats could reduce impacts.

	Scientific	Listing		Maximum Area o Affe Within SEZ	f Potential Habitat	Overall Potential Impact Magnitude ^f and Species-Specific
Common Name	Name	Status ^a	Habitat ^b	(Direct Effects) ^d	(Indirect Effects) ^e	Mitigation ^g
<i>Birds</i> Bendire's thrasher	Toxostoma bendirei	BLM-S; CA-SC	Summer resident in the SEZ region in a variety of desert habitats with fairly large shrubs or cacti and open ground, or open woodland with scattered shrubs and trees, between 0 and 550 m elevation. Nearest recorded occurrence is 2 mi south of the SEZ in the Chuckwalla DWMA. About 2,526,161 acres of potentially suitable habitat occurs within the SEZ region.	111,496 acres of potentially suitable habitat lost (4.4% of available suitable habitat)	235,350 acres of potentially suitable habitat (9.3% of available potentially suitable habitat)	Moderate overall impact. Pre-disturbance surveys and avoiding or minimizing disturbance to occupied habitats, especially nesting habitats on the SEZ, or compensatory mitigation of direct effects on occupied habitats could reduce impacts.
Crissal thrasher	Toxostoma crissale	CA-SC; FWS-SC	Year-round resident in SEZ region in dense thickets of scrubs or low trees in desert riparian and desert wash habitats, and in washes within pinyon-juniper habitats. Nearest recorded occurrence is approximately 1 mi south of the SEZ. About 295,943 acres of potentially suitable habitat occurs within the SEZ region.	635 acres of potentially suitable habitat lost (0.2% of available suitable habitat)	13,309 acres of potentially suitable habitat (4.5% of available potentially suitable habitat)	Small overall impact. Pre-disturbance surveys and avoiding or minimizing disturbance to occupied habitats, especially nesting habitats on the SEZ, or compensatory mitigation of direct effects on occupied habitats could reduce impacts.

Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Maximum Area o Affe Within SEZ (Direct Effects) ^d	of Potential Habitat <u>ected^c</u> Outside SEZ (Indirect Effects) ^e	Overall Potential Impact Magnitude ^f and Species-Specific Mitigation ^g
<i>Birds (Cont.)</i> Ferruginous hawk	Buteo regalis	BLM-S; FWS-SC	Winter resident and migrant in the SEZ region at lower elevations in open grasslands, shrublands, sagebrush flats, desert scrub, desert valleys, and fringes of pinyon-juniper habitats. Occurs in Riverside County, California in the SEZ region. About 1,978,858 acres of potentially suitable habitat occurs within the SEZ region.	112,197 acres of potentially suitable foraging habitat lost (5.7% of available suitable habitat)	287,942 acres of potentially suitable habitat (14.6% of available potentially suitable habitat)	Moderate overall impact on foraging habitat only. Avoidance of direct impacts on all foraging habitat is not feasible because suitable foraging habitat is widespread in the area of direct effects.
Gila woodpecker	Melanerpes uropygialis	CA-E; CA-S1	Year-round resident in the SEZ region along the Colorado River in desert riparian and desert wash habitats, orchards, vineyards, and urban habitats. Nearest recorded occurrence is from the Colorado River, approximately 6 mi east of the SEZ. About 297,582 acres of potentially suitable habitat occurs within the SEZ region.	0 acres	300 acres of potentially suitable habitat (0.1% of available potentially suitable habitat)	Small overall impact; no direct impact. No species-specific mitigation is needed.
Hepatic tanager	Piranga flava	CA-S1	Summer resident in SEZ region in open coniferous forests, montane pine-oak forests, riparian woodlands, and pine savanna. Nests high in coniferous or deciduous trees. Nearest recorded occurrences are 17 mi from the SEZ. About 3,283 acres of potentially suitable habitat occurs within the SEZ region.	223 acres of potentially suitable habitat lost (6.8% of available suitable habitat)	8 acres of potentially suitable habitat (0.2% of available potentially suitable habitat)	Moderate overall impact. Pre-disturbance surveys and avoiding or minimizing disturbance to occupied habitats, especially nesting habitats on the SEZ, or compensatory mitigation of direct effects on occupied habitats could reduce impacts.

Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Maximum Area o <u>Affe</u> Within SEZ (Direct Effects) ^d	f Potential Habitat cted ^c Outside SEZ (Indirect Effects) ^e	Overall Potential Impact Magnitude ^f and Species-Specific Mitigation ^g
<i>Birds (Cont.)</i> Loggerhead shrike	Lanius ludovicianus	CA-SC; FWS-SC	Breeds in SEZ region in open woodlands with moderate grass cover interspersed with areas of bare ground. Nearest recorded occurrences are approximately 10 mi south of the SEZ. About 3,635,415 acres of potentially suitable habitat occurs within the SEZ region.	202,050 acres of potentially suitable habitat lost (5.6% of available suitable habitat)	574,386 acres of potentially suitable habitat (15.8% of available potentially suitable habitat)	Moderate overall impact. Avoiding or minimizing disturbance of all woodland habitat on the SEZ would reduce or eliminate impacts. Alternatively, pre-disturbance surveys and avoiding or minimizing disturbance to occupied habitats, especially nesting habitats on the SEZ, or compensatory mitigation of direct effects on occupied habitats could reduce impacts.

Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Maximum Area o Affe Within SEZ (Direct Effects) ^d	of Potential Habitat ected ^c Outside SEZ (Indirect Effects) ^e	Overall Potential Impact Magnitude ^f and Species-Specific Mitigation ^g
Birds (Cont.) Lucy's warbler	Vermivora luciae	CA-S2; CA-SC	Riparian, chaparral, and hardwood woodlands having standing snags or hollow trees. Nonbreeding habitat includes dry washes and riparian forests. Nearest recorded occurrences are from the Colorado River, approximately 20 mi southeast of the SEZ. About 376,331 acres of potentially suitable habitat occurs within the SEZ region.	636 acres of potentially suitable habitat lost (0.2% of available suitable habitat)	15,966 acres of potentially suitable habitat (4.2% of available potentially suitable habitat)	Small overall impact. Avoiding or minimizing disturbance of all woodland and riparian habitat on the SEZ would reduce or eliminate impacts. Alternatively, pre-disturbance surveys and avoiding or minimizing disturbance to occupied habitats, especially nesting habitats on the SEZ, or compensatory mitigation of direct effects on occupied habitats could reduce impacts.
Western burrowing owl	Athene cunicularia hypugaea	BLM-S; CA-S2; CA-SC; FWS-SC	Year-round resident in the SEZ region. Open areas with short, sparse vegetation, including grasslands, agricultural fields, and disturbed areas. Nests in burrows created by mammals or tortoises. Known to occur in the affected area. Nearest occurrences are within 1 mi east of the SEZ. About 4,653,092 acres of potentially suitable habitat occurs within the SEZ region.	202,844 acres of potentially suitable habitat lost (4.4% of available suitable habitat)	652,982 acres of potentially suitable habitat (14.0% of available potentially suitable habitat)	Moderate overall impact. Pre-disturbance surveys and avoiding or minimizing disturbance of occupied burrows and habitats in the area of direct effects or compensatory mitigation of direct effects on occupied habitats could reduce impacts.

				Maximum Area of Potential Habitat Affected ^c		Overall Potential
Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Within SEZ (Direct Effects) ^d	Outside SEZ (Indirect Effects) ^e	Impact Magnitude ¹ and Species-Specific Mitigation ^g
Binds (Cont.)						
Arizona myotis	Myotis occultus	CA-S2; CA-SC; FWS-SC	Ponderosa pine and oak-pine woodlands in close proximity to water, and riparian forests within along the Colorado River. Known to occur in the affected area. Nearest recorded occurrences are 4 mi east of the SEZ. About 802,324 acres of potentially suitable habitat occurs within the SEZ region.	25,199 acres of potentially suitable habitat lost (3.1% of available suitable habitat)	79,658 acres of potentially suitable habitat (9.9% of available potentially suitable habitat)	Moderate overall impact on mostly foraging habitat. Pre-disturbance surveys and avoiding or minimizing disturbance of discovered roost areas on the SEZ could reduce impacts.
California leaf-nosed bat	Macrotus californicus	BLM-S; CA-S2; CA-SC; FWS-SC	Year-round resident in SEZ region in desert riparian, desert wash, desert scrub, and palm oasis habitats at elevations below 2,000 ft. Roosts in mines, caves, and buildings. Known to occur in the affected area. Nearest recorded occurrences are from the Palen/McCoy Wilderness within 2 mi of the SEZ. About 3,973,317 acres of potentially suitable habitat occurs within the SEZ region.	142,335 acres of potentially suitable habitat lost (3.6% of available suitable habitat)	430,378 acres of potentially suitable habitat (10.8% of available potentially suitable habitat)	Moderate overall impact on mostly foraging habitat. Pre-disturbance surveys and avoiding or minimizing disturbance of discovered roost areas on the SEZ could reduce impacts.
Cave myotis	Myotis velifer	BLM-S; CA-S1; CA-SC; FWS-SC	Year-round resident in SEZ region in desert scrub, shrublands, washes, and riparian habitats. Roosts in colonies in caves. Known to occur in the affected area. Nearest recorded occurrence is from the Mule Mountains ACEC about 2 mi south of the SEZ. About 4,136,719 acres of potentially suitable habitat occurs within the SEZ region.	142,335 acres of potentially suitable habitat lost (3.4% of available suitable habitat)	430,704 acres of potentially suitable habitat (10.4% of available potentially suitable habitat)	Moderate overall impact on mostly foraging habitat. Pre-disturbance surveys and avoiding or minimizing disturbance of discovered roost areas on the SEZ could reduce impacts.

				Maximum Area o Affe	f Potential Habitat cted ^c	Overall Potential
Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Within SEZ (Direct Effects) ^d	Outside SEZ (Indirect Effects) ^e	Impact Magnitude ¹ and Species-Specific Mitigation ^g
<i>Birds (Cont.)</i> Colorado Valley woodrat	Neotoma albigula venusta	CA-S1	Low-lying desert, creosote-mesquite, and pinyon- juniper habitats. Distribution is strongly influenced by the availability of den-building materials, including litter of cholla, prickly pear, mesquite, and catclaw, as well as its low tolerance for cold temperatures. Known to occur in the affected area. Nearest recorded occurrences are on BLM lands about 1 mi southeast of the SEZ. About 3,066,791 acres of potentially suitable habitat occurs within the SEZ region.	167,910 acres of potentially suitable habitat lost (5.5% of available suitable habitat)	425,558 acres of potentially suitable habitat (13.9% of available potentially suitable habitat)	Moderate overall impact. Pre-disturbance surveys and avoiding or minimizing disturbance of occupied habitats on the SEZ or compensatory mitigation of direct effects on occupied habitats could reduce impacts.
Nelson's bighorn sheep	Ovis canadensis nelsoni	BLM-S; FWS-SC	Open, steep rocky terrain in mountainous habitats of the eastern Mojave and Sonoran Deserts in California. Rarely uses desert lowlands, except as corridors for travel between mountain ranges. Known to occur in the affected area. Nearest recorded occurrences are from the Joshua Tree Wilderness and the Chuckwalla DWMA, about 2 mi north, west, and south of the SEZ. About 1,896,141 acres of potentially suitable habitat occurs within the SEZ region.	42,020 acres of potentially suitable habitat lost (2.2% of available suitable habitat)	223,604 acres of potentially suitable habitat (11.8% of available potentially suitable habitat)	Moderate overall impact. Pre-disturbance surveys and avoiding or minimizing disturbance of occupied habitats within the SEZ other habitats that serve as movement corridors could further reduce impacts.
Pallid bat	Antrozous pallidus	BLM-S; CA-SC; FWS-SC	Year-round resident in SEZ region in low- elevation desert communities, including grasslands, shrublands, and woodlands. Roosts in caves, crevices, and mines. Known to occur in the affected area. Nearest recorded occurrence is from the Chuckwalla Mountains Wilderness approximately 5 mi south of the SEZ. About 3,668,119 acres of potentially suitable habitat occurs within the SEZ region.	117,359 acres of potentially suitable habitat lost (3.2% of available suitable habitat)	351,380 acres of potentially suitable habitat (9.6% of available potentially suitable habitat)	Moderate overall impact on mostly foraging habitat. Pre-disturbance surveys and avoiding or minimizing disturbance of discovered roost areas on the SEZ could reduce impacts.

	Scientific	Listing		Maximum Area o Affe Within SEZ	f Potential Habitat ceted ^e Outside SEZ	Overall Potential Impact Magnitude ^f and Species-Specific
Common Name	Name	Status ^a	Habitat ^b	(Direct Effects) ^d	(Indirect Effects) ^e	Mitigation ^g
<i>Birds (Cont.)</i> Palm Springs pocket mouse	Perognathus longimembris bangsi	BLM-S; CA-S2; CA-SC	Creosote scrub, desert scrub, and grasslands on loose or sandy soils. Nearest recorded occurrence is from the Chuckwalla DWMA, approximately 25 mi west of the SEZ. About 3,749,649 acres of potentially suitable habitat occurs within the SEZ region.	198,472 acres of potentially suitable habitat lost (5.3% of available suitable habitat)	512,782 acres of potentially suitable habitat (13.7% of available potentially suitable habitat)	Moderate overall impact. Pre-disturbance surveys and avoiding or minimizing disturbance of occupied habitats on the SEZ or compensatory mitigation of direct effects on occupied habitats could reduce impacts.
Pocketed free- tailed bat	Nyctinomops femorosaccus	CA-S2; CA-SC; FWS-SC	Year-round resident in SEZ region lowland areas including creosotebush and chaparral habitats in association with very large boulders, high cliffs, rugged rock outcroppings, and rocky canyons. Nearest recorded occurrences are 37 mi south of the SEZ. About 1,964,239 acres of potentially suitable habitat occurs within the SEZ region.	111,496 acres of potentially suitable habitat lost (5.7% of available suitable habitat)	235,350 acres of potentially suitable habitat (12.0% of available potentially suitable habitat)	Moderate overall impact on mostly foraging habitat. Pre-disturbance surveys and avoiding or minimizing disturbance of discovered roost areas on the SEZ could reduce impacts.
Spotted bat	Euderma maculatum	BLM-S; CA-S2	Year-round resident in SEZ region in deserts, grasslands, and mixed coniferous forests at elevations below 10,000 ft. Roosts in caves, rock crevices, and buildings. Nearest recorded occurrence is 40 mi west of the SEZ. Suitable habitat exists on the site. About 2,363,936 acres of potentially suitable habitat occurs within the SEZ region.	111,719 acres of potentially suitable habitat lost (4.7% of available suitable habitat)	235,684 acres of potentially suitable habitat (10.0% of available potentially suitable habitat)	Moderate overall impact on mostly foraging habitat. Pre-disturbance surveys and avoiding or minimizing disturbance of discovered roost areas on the SEZ could reduce impacts.

				Maximum Area of Potential Habitat Affected ^e		Overall Potential
Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Within SEZ (Direct Effects) ^d	Outside SEZ (Indirect Effects) ^e	Species-Specific Mitigation ^g
Birds (Cont.) Townsend's big-eared bat	Corynorhinus townsendii	BLM-S; CA-S2; CA-SC; FWS-SC	Year-round resident in SEZ region in all habitats but subalpine and alpine habitats, and at any season. Roosts in caves, mines, tunnels, buildings, or other human-made structures. Known to occur in the affected area. Nearest recorded occurrences are approximately 4 mi southeast of the SEZ. About 5,065,765 acres of potentially suitable habitat occurs within the SEZ region.	202,912 acres of potentially suitable habitat lost (4.0% of available suitable habitat)	655,256 acres of potentially suitable habitat (12.9% of available potentially suitable habitat)	Moderate overall impact on mostly foraging habitat. Pre-disturbance surveys and avoiding or minimizing disturbance of discovered roost areas on the SEZ could reduce impacts.
Western mastiff bat	Eumops perotis californicus	BLM-S; CA-SC; FWS-SC	Year-round resident in SEZ region in open semiarid habitats, including conifer and deciduous woodlands, shrublands, grasslands, chaparral, and urban areas. Roosts in crevices in cliff faces, buildings, and tall trees. Known to occur in the affected area. Nearest recorded occurrence is 5 mi south of the SEZ. About 4,069,881 acres of potentially suitable habitat occurs within the SEZ region.	202,912 acres of potentially suitable habitat lost (5.0% of available suitable habitat)	655,256 acres of potentially suitable habitat (16.1% of available potentially suitable habitat)	Moderate overall impact on mostly foraging habitat. Pre-disturbance surveys and avoiding or minimizing disturbance of discovered roost areas on the SEZ could reduce impacts.
Western small- footed myotis	Myotis ciliolabrum	BLM-S; CA-S2	Year-round resident in SEZ region in woodland and riparian habitats at elevations below 9,000 ft. Roosts in caves, buildings, mines, and crevices of cliff faces. Nearest recorded occurrence is from the Chocolate Mountains, approximately 30 mi south of the SEZ. About 661,873 acres of potentially suitable habitat occurs within the SEZ region.	25,199 acres of potentially suitable habitat lost (3.8% of available suitable habitat)	79,658 acres of potentially suitable habitat (12.0% of available potentially suitable habitat)	Moderate overall impact on mostly foraging habitat. Pre-disturbance surveys and avoiding or minimizing disturbance of discovered roost areas on the SEZ could reduce impacts.

Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Maximum Area o Affe Within SEZ (Direct Effects) ^d	f Potential Habitat cted ^c Outside SEZ (Indirect Effects) ^e	Overall Potential Impact Magnitude ^f and Species-Specific Mitigation ^g
<i>Birds (Cont.)</i> Western yellow bat	Lasiurus xanthinus	BLM-S; AZ-WSC; AZ-S2; CA-SC	Year-round resident in SEZ region in desert riparian, desert wash, and palm oasis habitats at elevations below 2,000 ft. Roosts in trees. Nearest recorded occurrence is from Blythe, California, approximately 6 mi east of the SEZ. About 1,340,978 acres of potentially suitable habitat occurs within the SEZ region.	25,199 acres of potentially suitable habitat lost (1.9% of available suitable habitat)	79,658 acres of potentially suitable habitat (5.9% of available potentially suitable habitat)	Moderate overall impact on mostly foraging habitat. Pre-disturbance surveys and avoiding or minimizing disturbance of discovered roost areas on the SEZ could reduce impacts.
Yuma hispid cotton rat	Sigmodon hispidus eremicus	AZ-S2; CA-S2; CA-SC; FWS-SC	Dense stands of vegetation near wetlands, herbaceous grasslands, and hardwood woodland communities especially dense grassy areas such as fields, marshes, and roadside edges, brushy areas along streams or ponds, irrigated fields, and desert scrub. Nearest recorded occurrences are 50 mi south of the SEZ. About 176,434 acres of potentially suitable habitat occurs within the SEZ region.	76 acres of potentially suitable habitat lost (<0.1% of available suitable habitat)	53,096 acres of potentially suitable habitat (30.1% of available potentially suitable habitat)	Small overall impact. Pre-disturbance surveys and avoiding or minimizing disturbance of occupied habitats on the SEZ, or compensatory mitigation of direct effects on occupied habitats could reduce impacts.

Common Name	Scientific Name	Listing Status ^a	Habitat ^b	Maximum Area o Affe Within SEZ (Direct Effects) ^d	f Potential Habitat cted ^c Outside SEZ (Indirect Effects) ^e	Overall Potential Impact Magnitude ^f and Species-Specific Mitigation ^g
<i>Birds (Cont.)</i> Yuma mountain lion	Puma concolor browni	CA-S1; CA-SC	Riparian bottomlands, cottonwood-willow forests, mesquite bosques, adjacent desert foothills, low rocky mountains, and canyons within desert, chaparral shrubland, and mixed woodland communities especially sites with dense vegetation, caves or other natural cavities, rocky outcrops ranging, and tree/brush edges. Elevation ranges between 1,000 and 3,500 ft. Nearest recorded occurrences are 25 mi south of the SEZ. About 2,833,446 acres of potentially suitable habitat occurs within the SEZ region.	185,274 acres of potentially suitable habitat lost (6.5% of available suitable habitat)	542,622 acres of potentially suitable habitat (19.2% of available potentially suitable habitat)	Moderate overall impact. Pre-disturbance surveys and avoiding or minimizing disturbance of habitats within the SEZ that serve as movement corridors could further reduce impacts.

- ^a BLM-S = listed as a sensitive species by the BLM; CA-E = listed as endangered by the State of California; CA-S1 = ranked as S1 in the State of California; CA-S2 = ranked as S2 in the State of California; CA-T = listed as threatened by the State of California; ESA-T = listed as threatened under the ESA; ESA-UR = under review for listing under the ESA; FWS-SC = USFWS species of concern. An asterisk denotes that the listing status applies to populations only within the State of Arizona.
- ^b For plant and invertebrate species, potentially suitable habitat was determined using CAReGAP and SWReGAP land cover types. For reptile, bird, and mammal species, potentially suitable habitat was determined using CAReGAP and SWReGAP habitat suitability models as well as CAReGAP and SWReGAP land cover models. Area of potentially suitable habitat for each species is presented for the SEZ region, defined as the area within 50 mi (80 km) of the SEZ center.
- ^c Maximum area of potentially suitable habitat that could be affected relative to availability within the SEZ region. Habitat availability for each species within the region was determined using CAReGAP or SWReGAP habitat suitability and land cover models. This approach probably overestimates the amount of suitable habitat in the project area. Impacts of access road and transmission line construction, upgrade, or operation are not assessed in this evaluation because of the proximity of existing infrastructure to the SEZ.
- ^d Direct effects within the SEZ consist of the ground-disturbing activities associated with construction and the maintenance of an altered environment associated with operations.
- ^e Area of indirect effects was assumed to be the area adjacent to the SEZ within 5 mi (8 km) of the SEZ boundary. Indirect effects include effects from surface runoff, dust, noise, lighting, etc., from the SEZ, but do not include ground-disturbing activities. The potential degree of indirect effects would decrease with increasing distance away from the SEZ.

Footnotes continued on next page.

- ^f Overall impact magnitude categories were based on professional judgment and include (1) *small*: $\leq 1\%$ of the population or its habitat would be lost, and the activity would not result in a measurable change in carrying capacity or population size in the affected area; (2) *moderate*: >1 but $\leq 10\%$ of the population or its habitat, would be lost and the activity would result in a measurable but moderate (not destabilizing) change in carrying capacity or population size in the affected area; and (3) *large*: >10% of a population or its habitat would be lost and the activity would result in a large, measurable, and destabilizing change in carrying capacity or population size in the affected area. Note that much greater weight was given to the magnitude of direct effects because those effects would be difficult to mitigate. Programmatic design features would reduce most indirect effects to negligible levels.
- ^g Species-specific mitigations are suggested here but final mitigations should be developed in consultation with state and federal agencies, and should be based on predisturbance surveys.
- ^h Elevations in the areas of direct and indirect effect range from about 230 ft (70 m) to 3,800 ft (1,160 m).
- ⁱ To convert acres to km², multiply by 0.004047.
- ^j Species in bold text have been recorded or have designated critical habitat in the affected area.

- 1 effects (Figure 9.4.12.1-1; Table 9.4.12.1-1). The USGS desert tortoise model (Nussear et al. 2009) indicates that the majority of the SEZ is composed of less suitable habitat 2 3 than the surrounding landscape (modeled suitability value ≤ 0.5 out of 1.0). 4 5 Designated critical habitat for this species does not occur on the SEZ, but adjacent critical 6 habitat occurs south of the SEZ in the area of indirect effects within the Chuckwalla DWMA. 7 Designated critical habitat for the desert tortoise also occurs within the area of indirect effects 8 northwest of the SEZ within the Pinto Mountains DWMA. The Riverside East SEZ is situated 9 between the two DWMAs (Figure 9.4.12.1-1), and provides connectivity between them and other 10 Wildlife Habitat Management Areas (WHMAs) defined in the BLM NECO Plan (BLM and CDFG 2002) to facilitate the movement of desert tortoises and increase genetic diversity 11 12 (Stout 2009). 13 14 15 9.4.12.1.2 BLM-Designated Sensitive Species 16 17 There are 25 BLM-designated sensitive species that may occur in the affected area of the Riverside East SEZ (Table 9.4.12.1-1). These BLM-designated sensitive species include the 18 19 following (1) plants: alkali mariposa-lily, chaparral sand-verbena, creamy blazing star, giant 20 Spanish-needle, Harwood's eriastrum, Latimer's woodland-gilia, Little San Bernardino 21 Mountains linanthus, Munz's cholla, Orocopia sage, and white-margined beardtongue; 22 (2) reptiles: Mojave fringe-toed lizard and rosy boa; (3) birds: Bendire's thrasher, ferruginous 23 hawk, and western burrowing owl; and (4) mammals: California leaf-nosed bat, cave myotis,
- 24 Nelson's bighorn sheep, pallid bat, Palm Springs pocket mouse, spotted bat, Townsend's big-25 eared bat, western mastiff bat, western small-footed bat, and western yellow bat. Of these species, the Orocopia sage, Bendire's thrasher, western burrowing owl, California leaf-nosed bat, 26 27 cave myotis, Nelson's bighorn sheep, pallid bat, Townsend's big-eared bat, and western mastiff 28 bat have been recorded in the affected area. Habitats in which these species are found, the 29 amount of potentially suitable habitat in the affected area, and known locations of the species 30 relative to the SEZ are discussed below and presented in Table 9.4.12.1-1. Additional life history 31 information for these species is provided in Appendix J.
- 32 33

34

35

Alkali Mariposa-Lily

36 The alkali mariposa-lily is a perennial forb in the lily family that is known only from 37 wetlands in the western Mojave Desert region of southern California. It inhabits alkaline seeps, 38 springs, and meadows. The species is not known to occur on the SEZ, but potentially suitable 39 habitat does occur there and in other portions of the affected area (Table 9.4.12.1-1). The nearest 40 known occurrence of the species is about 40 mi (64 km) west of the Riverside East SEZ. 41

- 42
- 43 44

Chaparral Sand-Verbena

45 The chaparral sand-verbena is a flowering for that is endemic to southern California. It 46 historically occurred in the vicinity of the Riverside East SEZ and within the area of indirect

effects. The most recent recorded occurrences for this species are 23 mi (37 km) west of the
 SEZ. Although the species has not been recently recorded near the SEZ, potentially suitable sand
 dune habitat does occur there and in other portions of the affected area (Table 9.4.12.1-1).

4 5 6

7

Creamy Blazing-Star

8 The creamy blazing-star is an annual forb in the aster family that is endemic to the 9 Mojave Desert in southern California. It inhabits desert creosotebush scrub communities on 10 rocky and sandy substrates. The species is not known to occur on the SEZ, but potentially 11 suitable habitat does occur there and in other portions of the affected area (Table 9.4.12.1-1). 12 The nearest known occurrence of the species is about 45 mi (72 km) west of the Riverside East 13 SEZ.

14 15

16

17

Giant Spanish-Needle

18 The giant Spanish-needle is a flowering forb endemic to sand dune habitats in the 19 Sonoran Desert of southern California and southwestern Arizona. Populations are known to 20 occur as near as 40 mi (64 km) south of the SEZ. Populations are not known to occur on the 21 Riverside East SEZ, but suitable desert dune habitats may occur on the SEZ and in other portions 22 of the affected area (Table 9.4.12.1-1).

23 24 25

26

Harwood's Eriastrum

The Harwood's eriastrum is an annual forb that is known only from the Mojave Desert in southern California where it inhabits desert dunes. The species is not known to occur on the SEZ, but potentially suitable habitat does occur there and in other portions of the affected area (Table 9.4.12.1-1). The nearest known occurrence of the species is about 15 mi (24 km) northwest of the Riverside East SEZ in the Pinto Mountains DWMA.

32 33

34

35

Latimer's Woodland-Gilia

The Latimer's woodland-gilia is an annual forb in the phlox family that is endemic to southern California from San Bernardino and Riverside Counties. It inhabits desert scrub, washes, and pinyon-juniper woodland communities on rocky or sandy substrates. The species is not known to occur on the SEZ, but potentially suitable habitat does occur there and in other portions of the affected area (Table 9.4.12.1-1). The nearest known occurrence of the species is about 30 mi (48 km) west of the Riverside East SEZ.

- 42
- 43
- 44

1	Little San Bernardino Mountains Linanthus
2	
3	The Little San Bernardino Mountains linanthus is an annual forb in the phlox family that
4	dupped and sandy flats within grassotabush and Joshua tree woodland communities. The species is
5	not known to occur on the SEZ, but notentially suitable babitat does occur there and in other
7	not known to occur on the SEZ, but potentially suitable habitat does occur there and in other and potentially suitable habitat does occur there and in other and in other species is $(T_{ab}) = 0.4 + 12 + 1.4$.
8	about 30 mi (48 km) west of the Riverside Fast SE7
9	about 50 mm (40 km) west of the Riverside East SEE.
10	
11	Munz's Cholla
12	
13	The Munz's cholla is a tree-like cactus endemic to southern California where it is known
14	only from the Chocolate Mountains in Imperial and Riverside Counties as near as 20 mi (32 km)
15	south of the SEZ. The species inhabits Sonoran Desert creosotebush scrub communities. The
16	species is not known to occur on the Riverside East SEZ, but potentially suitable habitat occurs
17	on the SEZ and in other portions of the affected area (Table 9.4.12.1-1).
18	
19	
20	Orocopia Sage
21	
22	The Orocopia sage is a flowering evergreen shrub that is endemic to southern California
23	in dry desert washes and floodplains. The species is known to occur as near as 2 mi (3 km) south
24	of the Riverside East SEZ within the area of indirect effects. Potentially suitable habitat for the
25	species occurs on the SEZ and in other portions of the affected area (Table 9.4.12.1-1).
26	
27	
28	White-Margined Beardtongue
29	The white manained beaution are is a nonemial fach in the figurent family that a source
30 21	in the deserts of Arizona, California, and Navada. In California, it is known from fewer than
22	20 logations. It inhabits desort dunes and desort scrub communities of the Moieva Desort. The
32	20 locations. It initiabits desert duries and desert serub communities of the Mojave Desert. The nearest known occurrence of the species is about 50 mi (80 km) north of the Riverside East SE7:
37	notentially suitable babitat exists on the SEZ and in other portions of the affected area
35	(Table 9.4.12.1.1)
36	(1000 9.4.12.1-1).
37	
38	Mojave Fringe-Toed Lizard
39	nojuve i mige voeu Eizaru
40	The Mojave fringe-toed lizard is a fairly small, smooth-skinned lizard that inhabits
41	desert sand dune habitats the Mojave Desert of southern California. The species occurs in
42	scattered populations in dunes composed of fine, loose, windblown sand deposits. The
43	nearest known occurrence of the species is about 25 mi (40 km) north of the Riverside East SEZ;
44	potentially suitable dune habitats are known to occur on the SEZ and in other portions of the
45	affected area (Table 9.4.12.1-1).
46	

Rosy Boa

The rosy boa is a heavy-bodied snake that inhabits desert scrublands, rocky deserts, and canyons in southern California south of the Death Valley region. The nearest known occurrence is from Joshua Tree NP, approximately 25 mi (40 km) west of the Riverside East SEZ. Potentially suitable habitat occurs on the SEZ and in other portions of the affected area (Table 9.4.12.1-1).

9 10

11

Bendire's Thrasher

The Bendire's thrasher is a small neotropical migrant bird that is a summer breeding resident in southern California. This species inhabits desert succulent shrub and Joshua tree habitats in the Mojave Desert where it is associated with sagebrush, pinyon-juniper woodlands, cholla cactus, Joshua tree, palo verde, mesquite, and agave species. The species is known to occur as near as the Chuckwalla DWMA, 2 mi (3 km) south of the Riverside East SEZ in the area of indirect effects. Potentially suitable scrub and wash habitats may occur in the SEZ and other portions of the affected area (Table 9.4.12.1-1).

19 20

21

22

Ferruginous Hawk

The ferruginous hawk is a winter resident and migrant in the Riverside East SEZ region. The species inhabits open grasslands, sagebrush flats, desert scrub, and the edges of pinyonjuniper woodlands. It is known to occur in Riverside County, and potentially suitable foraging habitat occurs on the Riverside East SEZ and in other portions of the affected area (Table 9.4.12.1-1).

28

29

30 31

Western Burrowing Owl

The western burrowing owl is a year-round resident of open, dry grasslands and desert habitats in southern California and Arizona. The species occurs locally in open areas with sparse vegetation. The species is known to occur as near as 1 mi (1.6 km) east of the Riverside East SEZ in the area of indirect effects. Potentially suitable foraging and nesting habitat may occur in the SEZ and other portions of the affected area (Table 9.4.12.1-1). The availability of nest sites (burrows) within the affected area has not been determined; shrubland habitat that may be suitable for either foraging or nesting occurs throughout the affected area.

39 40

California Leaf-Nosed Bat

41 42

43 The California leaf-nosed bat is a large-eared bat with a leaflike flap of protective skin on 44 the tip of its nose. It primarily occurs along the Colorado River, from southern Nevada, through 45 Arizona and California, to Baja California and Sinaloa Mexico. The species forages in a variety 46 of desert habitats, including desert riparian, desert wash, desert scrub, and palm oasis. It roosts 1 in caves, crevices, and mines. The nearest recorded occurrences are from the Palen/McCoy

2 Wilderness within 2 mi (3 km) of the SEZ in the area of indirect effects. Potentially suitable

3 habitat may occur on the Riverside East SEZ and in other portions of the affected area

4 (Table 9.4.12.1-1). The potentially suitable habitat on the SEZ and in the area of indirect effects

5 could include foraging and roosting habitat. On the basis of an evaluation of land cover types,

approximately 5,600 acres (23 km²) and 115,700 acres (468 km²) of rocky cliffs and outcrops on
 the SEZ and in the area of direct effects, respectively, could be potentially suitable roosting

- 8 habitat for this species.
- 9 10

11

23 24

25

Cave Myotis

12 13 The cave myotis is known to occur in the lower Colorado River Basin in southern 14 California and Arizona. It inhabits desert scrublands, washes, and riparian habitats. This species roosts in colonies in caves. The nearest recorded occurrences are from the Mule Mountains 15 16 ACEC about 2 mi (3 km) south of the Riverside East SEZ. Potentially suitable habitat may occur 17 on the SEZ and in other portions of the affected area (Table 9.4.12.1-1). The potentially suitable 18 habitat on the SEZ and in the area of indirect effects could include foraging and roosting habitat. 19 On the basis of an evaluation of land cover types, approximately 5,600 acres (23 km²) and 20 115,700 acres (468 km²) of rocky cliffs and outcrops on the SEZ and in the area of direct effects, 21 respectively, could be potentially suitable roosting habitat for this species. 22

Nelson's Bighorn Sheep

26 The Nelson's bighorn sheep is one of several subspecies of bighorn sheep known to occur 27 in the southwestern United States. This species occurs in desert mountain ranges in Arizona, 28 California, Nevada, Oregon, and Utah. The Nelson's bighorn sheep uses primarily montane 29 shrubland, forest, and grassland habitats and may utilize desert valleys as corridors for travel 30 between range habitats. In California, the species is known from the desert mountain ranges from 31 the White Mountains, south to the San Bernardino Mountains, and southeastward to the Mexican 32 border. The Nelson's bighorn sheep uses primarily montane shrubland, forest, and grassland 33 habitats, and may utilize desert valleys as corridors for travel between range habitats. The nearest 34 recorded occurrences are from the Joshua Tree Wilderness and the Chuckwalla DWMA, about 35 2 mi (3 km) north, west, and south of the SEZ. The SEZ and other portions of the affected area 36 may provide important habitat for sheep travelling between ranges (Table 9.4.12.1-1).

- 37
- 38 39

40

Pallid Bat

The pallid bat is a large, pale bat with large ears that is locally common in desert grasslands and shrublands in the southwestern United States. It roosts in caves, crevices, and mines. The species is a year-round resident throughout southern California. The nearest recorded occurrence is from the Chuckwalla Mountains Wilderness, approximately 5 mi (8 km) south of the Riverside East SEZ. Potentially suitable habitat may occur on the SEZ and in other portions of the affected area (Table 9.4.12.1-1). The potentially suitable habitat on the SEZ and in the area of indirect effects could include foraging and roosting habitat. On the basis of an evaluation of
land cover types, approximately 5,600 acres (23 km²) and 115,700 acres (468 km²) of rocky
cliffs and outcrops on the SEZ and in the area of direct effects, respectively, could be potentially
suitable roosting habitat for this species.

Palm Springs Pocket Mouse

9 The Palm Springs pocket mouse is a pocket mouse subspecies known only to occur in 10 Riverside County within the Coachella Valley. This species inhabits desert scrub and grassland 11 communities on sandy soils. The nearest recorded occurrences are 25 mi (40 km) west of the 12 SEZ. Potentially suitable habitat occurs on the Riverside East SEZ and in other portions of the 13 affected area (Table 9.4.12.1-1).

14 15 16

6 7

8

Spotted Bat

17 18 The spotted bat is considered a rare year-round resident of southern California where it 19 forages in mountain foothills, desert shrublands, grasslands, washes, riparian areas, and mixed 20 conifer forests. The species roosts in rock crevices along cliffs. The nearest recorded occurrences 21 are approximately 40 mi (64 km) west of the Riverside East SEZ. Potentially suitable habitat 22 may occur on the SEZ and in other portions of the affected area (Table 9.4.12.1-1). The 23 potentially suitable habitat on the SEZ and in the area of indirect effects could include foraging 24 and roosting habitat. On the basis of an evaluation of land cover types, approximately 25 5,600 acres (23 km²) and 115,700 acres (468 km²) of rocky cliffs and outcrops on the SEZ and in the area of direct effects, respectively, could be potentially suitable roosting habitat for this 26 27 species.

- 28
- 29 30

31

Townsend's Big-Eared Bat

32 The Townsend's big-eared bat is widely distributed throughout the western United States. 33 In California, the species forages year-round in a wide variety of desert and non-desert habitats. 34 The species roosts in caves, mines, tunnels, buildings, and other man-made structures. The 35 nearest recorded occurrences are approximately 4 mi (6 km) southeast of the Riverside East SEZ. 36 Potentially suitable habitat may occur on the SEZ and in other portions of the affected 37 area (Table 9.4.12.1-1). The potentially suitable habitat on the SEZ and in the area of indirect 38 effects could include foraging and roosting habitat. On the basis of an evaluation of land cover 39 types, approximately 5,600 acres (23 km²) and 115,700 acres (468 km²) of rocky cliffs and 40 outcrops on the SEZ and in the area of direct effects, respectively, could be potentially suitable roosting habitat for this species. 41 42

- 43
- 44

Western Mastiff Bat

3 The western mastiff bat is a large uncommon resident of southern California and western 4 Arizona. The species forages in many open semiarid habitats, including conifer and deciduous 5 woodlands, shrublands, grassland, and urban areas. It roosts in crevices, trees, and buildings. The 6 nearest recorded occurrences are 5 mi (8 km) west of the Riverside East SEZ. Potentially suitable 7 habitat may occur on the SEZ and in other portions of the affected area (Table 9.4.12.1-1). The 8 potentially suitable habitat on the SEZ and in the area of indirect effects could include foraging 9 and roosting habitat. On the basis of an evaluation of land cover types, approximately 5,600 acres (23 km²) and 115,700 acres (468 km²) of rocky cliffs and outcrops on the SEZ and 10 in the area of direct effects, respectively, could be potentially suitable roosting habitat for this 11 12 species.

13

1

2

14 15

16

Western Small-Footed Myotis

17 The western small-footed myotis is a common year-round resident in desert habitats of 18 southern California. It occurs in a variety of desert woodland and riparian habitats. This species 19 roosts in caves, buildings, mines, and rock crevices. The nearest recorded occurrences are from 20 the Chocolate Mountains, approximately 30 mi (48 km) south of the Riverside East SEZ. 21 Potentially suitable habitat may occur on the SEZ and in other portions of the affected area 22 (Table 9.4.12.1-1). The potentially suitable habitat on the SEZ and in the area of indirect effects 23 could include foraging and roosting habitat. On the basis of an evaluation of land cover types, approximately 5,600 acres (23 km²) and 115,700 acres (468 km²) of rocky cliffs and outcrops on 24 25 the SEZ and in the area of direct effects, respectively, could be potentially suitable roosting habitat for this species. 26

27 28

29

30

Western Yellow Bat

9.4.12.1.3 State-Listed Species

31 The western yellow bat is an uncommon year-round resident in the foothill and desert 32 regions of southern California and southwestern Arizona. It occurs in a variety of desert wash, 33 riparian, and palm oasis habitats. This species roosts in trees. The nearest recorded occurrences 34 are from the vicinity of Blythe, California, approximately 6 mi (10 km) east of the Riverside East 35 SEZ. Potentially suitable habitat may occur on the SEZ and in other portions of the affected area 36 (Table 9.4.12.1-1). The potentially suitable habitat on the SEZ and in the area of indirect effects 37 could include foraging and roosting habitat. On the basis of an evaluation of land cover types, 38 approximately 223 acres (1 km²) and 335 acres (1.5 km²) of riparian woodlands on the SEZ and 39 in the area of direct effects, respectively, could be potentially suitable roosting habitat for this 40 species.

41

- 42
- 43

44

There are two species listed by the State of California that may occur in the Riverside
 East SEZ affected area—the desert tortoise and Gila woodpecker (Table 9.4.12.1-1). The desert

tortoise is listed as threatened under the CESA; this species is discussed in Section 9.4.12.1.1
 because of its status under the ESA.

4 The Gila woodpecker is listed as an endangered species under the CESA. It is a fairly 5 uncommon resident in southern California and southwestern Arizona, where it occurs in desert 6 riparian and wash habitats along the lower Colorado River Basin. Additional life history 7 information for this species is provided in Appendix J. The nearest recorded occurrence for this 8 species is from the Colorado River, approximately 6 mi (10 km) east of the Riverside East SEZ. 9 According to the CAReGAP habitat suitability model, potentially suitable habitat for this species 10 does not occur on the SEZ; however, potentially suitable foraging and nesting habitat may occur in portions of the area of indirect effects (Table 9.4.12.1-1). 11 12

9.4.12.1.4 Rare Species

There are 68 rare species (i.e., state rank of S1 or S2 in California or a species of concern by the State of California or USFWS) that may occur in the affected area of the Riverside East SEZ (Table 9.4.12.1-1). Of these species, there are 42 that have not been discussed as ESA-listed (Section 9.4.12.1.1), BLM-designated sensitive (Section 9.4.12.1.2), or state-listed (Section 9.4.12.1.3).

9.4.12.2 Impacts

This section discusses the potential for impacts on special status species from utility-scale solar energy development within the proposed Riverside East SEZ. The types of impacts that special status species could incur from construction and operation of utility-scale solar energy facilities are discussed in Section 5.10.4.

30 The assessment of impacts on special status species is based on available information on 31 the presence of species in the affected area, as presented in Section 9.4.12.1, following the 32 analysis approach described in Appendix M. It is assumed that, prior to development, surveys 33 would be conducted to determine the presence of special status species and their habitats in and 34 near areas where ground-disturbing activities would occur. Additional NEPA assessments, ESA 35 consultations, and coordination with state natural resource agencies may be needed to address 36 project-specific impacts more thoroughly. These assessments and consultations could result in 37 additional required actions to avoid, minimize, or mitigate impacts on special status species 38 (see Section 9.4.12.3).

39

3

13 14

15

22 23

24

Solar energy development within the Riverside East SEZ could affect a variety of habitats (see Section 9.4.10). These impacts on habitats could in turn affect special status species that are dependent on those habitats. Based on CNDDB records and information provided by the USFWS, there are 29 special status species known to occur in the affected area of the Riverside East SEZ (Section 9.4.12.1). These species are listed in bold in Table 9.4.12.1-1. No other special status species have been recorded in the affected area (CDFG 2010b). Other special

46 status species may occur on the SEZ or within the affected area based on the presence of

potentially suitable habitat. As discussed in Section 9.4.12.1, this approach to identifying the
species that could occur in the affected area probably overestimates the number of species that
actually occur in the affected area, and may therefore overestimate impacts on some special
status species.

6 Potential direct and indirect impacts on special status species within the SEZ and in the 7 area of indirect effect outside the SEZ are presented in Table 9.4.12.1-1. In addition, the overall 8 potential magnitude of impacts on each species (assuming programmatic design features are in 9 place) is presented along with any potential species-specific mitigation measures that could 10 further reduce impacts.

11

Impacts on special status species could occur during all phases of development (construction, operation, and decommissioning and reclamation) of a utility-scale solar energy project within the SEZ. Construction and operation activities could result in short- or long-term impacts on individuals and their habitats, especially if these activities are sited in areas where special status species are known to or could occur. As presented in Section 9.4.1.2, impacts of access road and transmission line construction, upgrade, or operation are not assessed in this evaluation because of the proximity of existing infrastructure to the SEZ.

19

20 Direct impacts would result from habitat destruction or modification. It is assumed that 21 direct impacts would occur only within the SEZ where ground-disturbing activities are expected 22 to occur. Indirect impacts could result from surface water and sediment runoff from disturbed 23 areas, fugitive dust generated by project activities, accidental spills, harassment, and lighting. No ground-disturbing activities associated with project facilities are anticipated to occur within the 24 25 area of indirect effects. Decommissioning of facilities and reclamation of disturbed areas after operations cease could result in short-term negative impacts to individuals and habitats adjacent 26 27 to project areas, but long-term benefits would accrue if original land contours and native plant 28 communities were restored in previously disturbed areas.

29

The successful implementation of programmatic design features (discussed in Appendix A, Section A.2.2) would reduce direct impacts on some special status species, especially those that depend on habitat types that can be easily avoided (e.g., dunes and sand transport systems, playa and desert wash habitats). Indirect impacts on special status species could be reduced to negligible levels by implementing programmatic design features, especially those engineering controls that would reduce runoff, sedimentation, spills, and fugitive dust.

- 37
- 38
- 38

9.4.12.2.1 Impacts on Species Listed under the ESA

The desert tortoise is the only ESA-listed species that has the potential to occur in the affected area of the Riverside East SEZ and is the only ESA-listed species the USFWS identified as potentially affected by solar energy development on the SEZ (Stout 2009). The desert tortoise is known to occur in the Chuckwalla DWMA adjacent to the southern boundary of the SEZ in the area of indirect effects; populations are also known to occur in Joshua Tree NP and Pinto Mountains DWMA, adjacent to the western and northwestern border of the SEZ

47 (Figure 9.4.12.1-1). According to the CAReGAP habitat suitability model, approximately

1 $185.274 \text{ acres} (750 \text{ km}^2)$ of potentially suitable habitat on the SEZ could be directly affected by 2 construction and operations of solar energy development on the SEZ (Table 9.4.12.1-1). This 3 direct effects area represents about 4.4% of available suitable habitat of the desert tortoise in the 4 region. The USGS desert tortoise model (Nussear et al. 2009) indicates that the majority of the 5 SEZ is composed of less suitable habitat than the surrounding landscape (modeled suitability 6 value <0.5 out of 1.0). About 542,622 acres $(2,200 \text{ km}^2)$ of suitable habitat occurs in the area of 7 potential indirect effects; this area represents about 12.9% of the available suitable habitat in the 8 region (Table 9.4.12.1-1).

9

10 On the basis of desert tortoise surveys conducted in Joshua Tree NP, adjacent to the western border of the SEZ, the USFWS estimated that full-scale solar energy development on the 11 12 SEZ may directly affect up to 2,865 desert tortoises on the SEZ (Stout 2009). In addition to 13 direct impacts, development on the SEZ could indirectly affect desert tortoises by fragmenting and degrading adjacent habitat (refer to Section 5.10.4 for a discussion of possible indirect 14 impacts). Fragmentation would be exacerbated by the installation of exclusionary fencing at the 15 16 perimeter of the SEZ or individual project areas. The SEZ is situated between the Chuckwalla and Pinto Mountains DWMAs (these DWMAs also contain USFWS-designated critical habitat), 17 18 and WHMAs within the SEZ may provide important connectivity for desert tortoise movements 19 between the DWMAs (BLM and CDFG 2002; Stout 2009). Therefore, development on the SEZ 20 may disrupt desert tortoise population dynamics in nearby DWMAs and designated critical 21 habitat.

22

23 The overall impact on the desert tortoise from construction, operation, and 24 decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is 25 considered moderate because the amount of potentially suitable habitat for this species in the area of direct effects represents between 1% and 10% of potentially suitable habitat in the region 26 27 and the implementation of programmatic design features alone is unlikely to substantially reduce 28 these impacts. Avoidance of all potentially suitable habitats for this species is not a feasible 29 means of mitigating impacts because these habitats (desert scrub) are widespread throughout the 30 area of direct effects.

31

32 Development of actions to reduce impacts (e.g., reasonable and prudent alternatives, 33 reasonable and prudent measures, and terms and conditions) for the desert tortoise, including 34 development of a survey protocol, avoidance measures, minimization measures, and, potentially, 35 translocation actions and compensatory mitigation, would require formal consultation with the USFWS under Section 7 of the ESA. These consultations may be used to authorize incidental 36 37 take statements per Section 10 of the ESA (if necessary). In addition, the CESA provides 38 authority to the CDFG to regulate potential impacts on the desert tortoise and other species listed 39 under the CESA. Therefore, formal consultation with the CDFG would also be required to permit 40 the incidental take of desert tortoises in the SEZ.

41

42 There are inherent dangers to tortoises associated with their capture, handling, and

43 translocation from the SEZ. These actions, if done improperly, can result in injury or death.

44 To minimize these risks, and as stated above, the desert tortoise translocation plan should be

developed in consultation with the USFWS and CDGF, and follow the *Guidelines for Handling Desert Tortoises During Construction Projects* (Desert Tortoise Council 1994) and other current
translocation guidance provided by the USFWS and CDFG. Consultation will identify potentially suitable recipient locations, density thresholds for tortoise populations in recipient locations, procedures for pre-disturbance clearance surveys and tortoise handling, as well as disease testing and post-translocation monitoring and reporting requirements. Despite some risk of mortality or decreased fitness, translocation is widely accepted as a useful strategy for the conservation of the desert tortoise (Field et al. 2007).

8 To offset impacts of solar development on the SEZ, compensatory mitigation may be 9 needed to balance the acreage of habitat lost with acquisition of lands that would be improved 10 and protected for desert tortoise populations (USFWS 1994). Compensation can be accomplished 11 by improving the carrying capacity for the desert tortoise on the acquired lands. Other mitigation 12 actions may include funding for the enhancement of desert tortoise habitat on existing federal 13 lands. Consultations with the USFWS and CDGF would be necessary to determine the 14 appropriate mitigation ratio to acquire, enhance, and preserve desert tortoise compensation lands.

15 16

17

18 19

20

21 22 23

24

7

9.4.12.2.2 Impacts on BLM-Designated Sensitive Species

Impacts on the 25 BLM-designated sensitive species that have potentially suitable habitat within the affected area of the Riverside East SEZ are discussed below.

Alkali Mariposa-Lily

The alkali mariposa-lily is not known to occur in the affected area of the Riverside East SEZ; however, approximately 1,570 acres (6 km²) of potentially suitable desert playa habitat on the SEZ could be directly affected by construction and operations (Table 9.4.12.1-1). This direct impact area represents about 2.3% of available suitable habitat in the region. About 828 acres (3 km²) of potentially suitable habitat occurs in the area of potential indirect effect; this area represents about 1.2% of the available suitable habitat in the region (Table 9.4.12.1-1).

The overall impact on the alkali mariposa-lily from construction, operation, and decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is considered moderate because the amount of potentially suitable habitat for this species in the area of direct effects represents greater than 1% but less than 10% of potentially suitable habitat in the region. The implementation of programmatic design features may be sufficient to reduce indirect impacts to negligible levels.

38

39 Potentially suitable habitat for the alkali mariposa-lily occurs in a limited portion of the 40 SEZ (primarily associated with Ford Dry Lake and Palen Lake) and could be completely avoided during the development of facilities and protected from indirect effects. Alternatively, avoiding 41 42 or minimizing disturbance to occupied habitats also would reduce impacts on this species. If 43 avoidance or minimization is not a feasible option, plants could be translocated from the area of direct effects to protected areas that would not be affected directly or indirectly by future 44 45 development. Alternatively, or in combination with translocation, a compensatory mitigation 46 plan could be developed and implemented to mitigate direct effects on occupied habitats. The

1 protection and enhancement of existing occupied or suitable habitats could compensate for 2 habitats lost to development. A comprehensive mitigation strategy that uses one or more of these options could be designed to completely offset the impacts of development. The need for 3 4 mitigation, other than programmatic design features, should be determined by conducting pre-5 disturbance surveys for the species and its habitat on the SEZ. 6 7 8 **Chaparral Sand-Verbena** 9 10 The chaparral sand-verbena historically occurred on the SEZ, but it is currently only known to occur outside of the area of indirect effects approximately 23 mi (37 km) from the 11 12 SEZ. Approximately 26,798 acres (108 km²) of potentially suitable desert sand dune habitat 13 within the SEZ may be directly affected by project construction and operations (Table 9.4.12.1-1). This direct impact area represents 31.8% of available suitable habitat in the 14 region. About 15,987 acres (65 km²) of potentially suitable habitat occurs within the area of 15 16 indirect effects; this area represents about 19.0% of the available suitable habitat in the region 17 (Table 9.4.12.1-1). 18 19 The overall impact on the chaparral sand-verbena from construction, operation, and 20 decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is 21 considered large because the amount of potentially suitable habitat for this species in the area of 22 direct effects represents 10% or more of potentially suitable habitat in the region. The 23 implementation of programmatic design features would reduce indirect impacts to negligible 24 levels. 25 26 Chaparral sand-verbena habitat (desert sand dunes) occupies portions of the SEZ that 27 could be avoided during the development of facilities and protected from indirect effects. In 28 conjunction with the implementation of programmatic design features, avoiding or minimizing 29 disturbance to occupied habitats and desert dunes and sand transport systems and applying the 30 mitigation measures described previously for the alkali mariposa-lily could further reduce 31 impacts on this species. The need for mitigation should first be determined by conducting pre-32 disturbance surveys for the species and its habitat on the SEZ. 33 34 35 **Creamy Blazing-Star** 36 37 The creamy blazing-star is not known to occur in the affected area of the Riverside East 38 SEZ; however, approximately 109,933 acres (445 km²) of potentially suitable desert scrub 39 habitat on the SEZ could be directly affected by construction and operations (Table 9.4.12.1-1). 40 This direct impact area represents about 5.0% of available suitable habitat in the region. About 229,999 acres (931 km²) of potentially suitable habitat occurs in the area of potential indirect 41 42 effect; this area represents about 10.4% of the available suitable habitat in the region 43 (Table 9.4.12.1-1). 44 45 The overall impact on the creamy blazing-star from construction, operation, and 46 decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is

considered moderate because the amount of potentially suitable habitat for this species in the
area of direct effects represents greater than 1% but less than 10% of potentially suitable habitat
in the region. The implementation of programmatic design features alone is unlikely to
substantially reduce impacts.

Avoidance of all potentially suitable habitats is not feasible to mitigate impacts on the
creamy blazing-star because some of these habitats (desert scrub) are widespread throughout the
area of direct effect. However, impacts could be reduced to negligible levels with the
implementation of programmatic design features and the mitigation options described previously
for the alkali mariposa-lily. The need for mitigation should first be determined by conducting
pre-disturbance surveys for the species and its habitat on the SEZ.

Giant Spanish-Needle

The giant Spanish-needle is not known to occur in the affected area of the Riverside East SEZ; however, approximately 26,798 acres (108 km²) of potentially suitable desert dune habitat on the SEZ could be directly affected by construction and operations (Table 9.4.12.1-1). This direct impact area represents 31.8% of available suitable habitat in the SEZ region. About 15,987 acres (65 km²) of potentially suitable habitat occurs in the area of potential indirect effect; this area represents about 19.0% of the available suitable habitat in the SEZ region (Table 9.4.12.1-1).

23

13 14

15

The overall impact on the giant Spanish-needle from construction, operation, and decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is considered large because the amount of potentially suitable habitat for this species in the area of direct effects represents 10% or more of potentially suitable habitat in the SEZ region. The implementation of programmatic design features would reduce indirect impacts to negligible levels.

30

Giant Spanish-needle habitat (desert dunes) occupies portions of the SEZ that could be avoided during the development of solar facilities and protected from indirect effects. In conjunction with the implementation of programmatic design features, avoiding or minimizing disturbance to occupied habitats and desert dunes and sand transport systems and applying the mitigation measures described previously for the alkali mariposa-lily could further reduce impacts on this species. The need for mitigation should first be determined by conducting predisturbance surveys for the species and its habitat on the SEZ.

38 39

40

41

Harwood's Eriastrum

The Harwood's eriastrum is not known to occur in the affected area of the Riverside East SEZ; however, approximately 26,798 acres (108 km²) of potentially suitable desert dune habitat on the SEZ could be directly affected by construction and operations (Table 9.4.12.1-1). This direct impact area represents about 31.8% of available suitable habitat in the region. About 15,987 acres (65 km²) of potentially suitable habitat occurs in the area of potential indirect effect; this area represents about 19.0% of the available suitable habitat in the SEZ region
 (Table 9.4.12.1-1).
 3

The overall impact on the Harwood's eriastrum from construction, operation, and decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is considered large because the amount of potentially suitable habitat for this species in the area of direct effects represents 10% or more of potentially suitable habitat in the SEZ region. The implementation of programmatic design features would reduce indirect impacts to negligible levels.

10

Harwood's eriastrum habitat (desert dunes) occupies portions of the SEZ that could be avoided during the development of solar facilities and protected from indirect effects. In conjunction with the implementation of programmatic design features, avoiding or minimizing disturbance to occupied habitats and desert dunes and sand transport systems and applying the mitigation measures described previously for the alkali mariposa-lily could further reduce impacts on this species. The need for mitigation should first be determined by conducting predisturbance surveys for the species and its habitat on the SEZ.

18 19

20

21

Latimer's Woodland-Gilia

The Latimer's woodland-gilia is not known to occur in the affected area of the Riverside East SEZ; however, approximately 136,472 acres (552 km²) of potentially suitable desert scrub and wash habitat on the SEZ could be directly affected by construction and operations (Table 9.4.12.1-1). This direct impact area represents about 4.7% of available suitable habitat in the SEZ region. About 314,674 acres (1,273 km²) of potentially suitable habitat occurs in the area of potential indirect effect; this area represents about 10.8% of the available suitable habitat in the region (Table 9.4.12.1-1).

29

The overall impact on the Latimer's woodland gilia from construction, operation, and decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is considered moderate because the amount of potentially suitable habitat for this species in the area of direct effects represents greater than 1% but less than 10% of potentially suitable habitat in the region. The implementation of programmatic design features alone is unlikely to substantially reduce impacts.

36

Avoidance of all potentially suitable habitats is not feasible to mitigate impacts on the
Latimer's woodland gilia because some of these habitats (desert scrub) are widespread
throughout the area of direct effect. However, impacts could be reduced to negligible levels with
the implementation of mitigation options described previously for the alkali mariposa-lily. The
need for mitigation should first be determined by conducting pre-disturbance surveys for the
species and its habitat on the SEZ.

- 43
- 44
- 45

Little San Bernardino Mountains Linanthus

The Little San Bernardino Mountains linanthus is not known to occur in the affected area of the Riverside East SEZ; however, approximately 26,798 acres (108 km²) of potentially suitable desert dune habitat on the SEZ could be directly affected by construction and operations (Table 9.4.12.1-1). This direct impact area represents about 31.8% of available suitable habitat in the region. About 15,987 acres (65 km²) of potentially suitable habitat occurs in the area of potential indirect effect; this area represents about 19.0% of the available suitable habitat in the SEZ region (Table 9.4.12.1-1).

10

11 The overall impact on the Little San Bernardino Mountains linanthus from construction, 12 operation, and decommissioning of utility-scale solar energy facilities within the Riverside East 13 SEZ is considered large because the amount of potentially suitable habitat for this species in the 14 area of direct effects represents 10% or more of potentially suitable habitat in the SEZ region. 15 The implementation of programmatic design features would reduce indirect impacts to negligible 16 levels.

17

Little San Bernardino Mountains linanthus habitat (desert dunes) occupies portions of the SEZ that could be avoided during the development of solar facilities and protected from indirect effects. In conjunction with the implementation of programmatic design features, avoiding or minimizing disturbance to occupied habitats and desert dunes and sand transport systems and applying the mitigation measures described previously for the alkali mariposa-lily could further reduce impacts on this species. The need for mitigation should first be determined by conducting pre-disturbance surveys for the species and its habitat on the SEZ.

25 26

27

28

Munz's Cholla

The Munz's cholla is not known to occur in the affected area of the Riverside East SEZ; however, approximately 171,716 acres (695 km²) of potentially suitable desert scrub and wash habitats on the SEZ could be directly affected by construction and operations (Table 9.4.12.1-1). This direct impact area represents about 4.1% of available suitable habitat in the SEZ region. About 570,180 acres (2,307 km²) of potentially suitable habitat occurs in the area of potential indirect effect; this area represents about 13.6% of the available suitable habitat in the SEZ region (Table 9.4.12.1-1).

36

The overall impact on the Munz's cholla from construction, operation, and decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is considered moderate because the amount of potentially suitable habitat for this species in the area of direct effects represents greater than 1% but less than 10% of potentially suitable habitat in the SEZ region. The implementation of programmatic design features alone is unlikely to substantially reduce impacts.

43

Avoidance of all potentially suitable habitats is not a feasible way to mitigate impacts on
 the Munz's cholla because these habitats (mostly desert scrub) are widespread throughout the
 area of direct effect. However, impacts could be reduced to negligible levels with the

implementation of programmatic design features and the mitigation options described previously
 for the alkali mariposa-lily. The need for mitigation should first be determined by conducting
 pre-disturbance surveys for the species and its habitat on the SEZ.

4 5 6

7

Orocopia Sage

8 The Orocopia sage is known from the Chuckwalla DWMA within the Riverside East 9 SEZ area of indirect effects. Approximately 134,909 acres (546 km²) of potentially suitable 10 desert scrub and wash habitats on the SEZ could be directly affected by construction and 11 operations (Table 9.4.12.1-1). This direct impact area represents about 4.7% of available suitable 12 habitat in the SEZ region. About 309,323 acres (1,252 km²) of potentially suitable habitat occurs 13 in the area of potential indirect effect; this area represents about 10.8% of the available suitable 14 habitat in the region (Table 9.4.12.1-1).

15

16 The overall impact on the Orocopia sage from construction, operation, and 17 decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is 18 considered moderate because the amount of potentially suitable habitat for this species in the 19 area of direct effects represents greater than 1% but less than 10% of potentially suitable habitat 20 in the SEZ region. The implementation of programmatic design features alone is unlikely to 21 substantially reduce impacts.

22

Avoidance of all potentially suitable habitats is not a feasible way to mitigate impacts on the Orocopia sage because potentially suitable desert scrub habitats are widespread throughout the area of direct effect. However, impacts could be reduced to negligible levels with the implementation of programmatic design features and the mitigation options described previously for the alkali mariposa-lily. The need for mitigation should first be determined by conducting pre-disturbance surveys for the species and its habitat on the SEZ.

29 30

31

White-Margined Beardtongue

The white-margined beardtongue is not known to occur on the Riverside East SEZ; however, approximately 138,294 acres (560 km²) of potentially suitable desert scrub and dune habitat on the SEZ could be directly affected by construction and operations (Table 9.4.12.1-1). This direct impact area represents about 5.8% of available suitable habitat in the SEZ region. About 251,337 acres (1,017 km²) of potentially suitable habitat occurs in the area of potential indirect effect; this area represents about 10.6% of the available suitable habitat in the SEZ region (Table 9.4.12.1-1).

40

The overall impact on the white-margined beardtongue from construction, operation, and decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is considered moderate because the amount of potentially suitable habitat for this species in the area of direct effects represents greater than 1% but less than 10% of potentially suitable habitat in the SEZ region. The implementation of programmatic design features alone is unlikely to substantially reduce impacts. Avoidance of all potentially suitable habitats is not feasible to mitigate impacts on the white-margined beardtongue because some of these habitats (desert scrub) are widespread throughout the area of direct effect. However, impacts could be reduced to negligible levels with the implementation of programmatic design features and the mitigation options described previously for the alkali mariposa-lily. The need for mitigation should first be determined by conducting pre-disturbance surveys for the species and its habitat on the SEZ.

8 9

10

Mojave Fringe-Toed Lizard

The Mojave fringe-toed lizard is not known to occur on the Riverside East SEZ; however, according to the CAReGAP habitat suitability model, approximately 140,506 acres (569 km²) of potentially suitable habitat on the SEZ could be directly affected by construction and operations (Table 9.4.12.1-1). This direct impact area represents about 7.6% of available suitable habitat in the SEZ region. About 380,038 acres (1,538 km²) of potentially suitable foraging habitat occurs in the area of potential indirect effect; this area represents about 20.6% of the available suitable habitat in the region (Table 9.4.12.1-1).

- The overall impact on the Mojave fringe-toed lizard from construction, operation, and decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is considered moderate because the amount of potentially suitable habitat for this species in the area of direct effects represents greater than 1% but less than 10% of potentially suitable habitat in the SEZ region. The implementation of programmatic design features would reduce indirect impacts to negligible levels.
- 25

26 Avoidance of all potentially suitable habitats is not a feasible option for mitigating 27 impacts on the Mojave fringe-toed lizard because, according to the CAReGAP habitat suitability 28 model, these habitats are widespread throughout the area of direct effects. However, avoiding or 29 minimizing disturbance to occupied habitats, dune and sand transport systems, and desert wash 30 habitats would reduce impacts on this species. If avoidance or minimization is not feasible, 31 impacts could be reduced by conducting pre-disturbance surveys and avoiding or minimizing 32 impacts on occupied habitats on the SEZ. If avoidance or minimization is not a feasible option, a 33 compensatory mitigation plan could be developed and implemented to mitigate direct effects on 34 occupied habitats. The protection and enhancement of existing occupied or suitable habitats 35 could compensate for habitats lost to development. A comprehensive mitigation strategy that 36 uses one or both of these options could be designed to completely offset the impacts of development. The need for mitigation should first be determined by conducting pre-disturbance 37 38 surveys for the species and its habitat on the SEZ.

39 40

41

Rosy Boa

The rosy boa is not known to occur on the Riverside East SEZ; however, according to
the CAReGAP habitat suitability model, approximately 185,274 acres (750 km²) of potentially
suitable habitat on the SEZ could be directly affected by construction and operations
(Table 9.4.12.1-1). This direct impact area represents about 4.4% of available habitat in the

SEZ region. About 544,126 acres (2,200 km²) of potentially suitable habitat occurs in the area
of potential indirect effect; this area represents about 13.0% of the available suitable habitat in
the region (Table 9.4.12.1-1).

4

5 The overall impact on the rosy boa from construction, operation, and decommissioning of 6 utility-scale solar energy facilities within the Riverside East SEZ is considered moderate because 7 the amount of potentially suitable habitat for this species in the area of direct effects represents 8 greater than 1% but less than 10% of potentially suitable habitat in the SEZ region. The 9 implementation of programmatic design features is expected to reduce indirect impacts to 10 negligible levels.

11

12 Avoidance of all potentially suitable habitats is not a feasible option for mitigating 13 impacts on the rosy boa because potentially suitable desertscrub habitats are widespread throughout the area of direct effects. Impacts could be reduced to negligible levels through 14 implementing programmatic design features and avoiding or minimizing disturbance to occupied 15 16 habitats on the SEZ. If avoidance or minimization is not a feasible option, a compensatory 17 mitigation plan could be developed and implemented to mitigate direct effects on occupied habitats. The protection and enhancement of existing occupied or suitable habitats could 18 19 compensate for habitats lost to development. A comprehensive mitigation strategy that uses one 20 or both of these options could be designed to completely offset the impacts of development. The 21 need for mitigation should first be determined by conducting pre-disturbance surveys for the 22 species and its habitat on the SEZ.

23 24

25

26

Bendire's Thrasher

27 The Bendire's thrasher is a summer resident in southern California and is known to occur in the Chuckwalla DWMA within the area of indirect effects. According to the CAReGAP land 28 29 cover model, approximately 111,496 acres (451 km²) of potentially suitable habitat on the SEZ 30 could be directly affected by construction and operations of solar energy development on the SEZ (Table 9.4.12.1-1). This direct effects area represents about 4.4% of available suitable 31 32 habitat in the region. About 235,350 acres (952 km²) of suitable habitat occurs in the area of 33 potential indirect effects; this area represents about 9.3% of the available suitable habitat in the 34 region (Table 9.4.12.2-2).

35

The overall impact on the Bendire's thrasher from construction, operation, and decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is considered moderate because the amount of potentially suitable habitat for this species in the area of direct effects represents greater than 1% but less than 10% of potentially suitable habitat in the SEZ region. The implementation of programmatic design features is expected to reduce indirect impacts to negligible levels.

42

Avoidance of all potentially suitable habitats is not feasible to mitigate impacts on the
 Bendire's thrasher, because potentially suitable foraging habitats (desert scrub) are widespread
 throughout the area of direct effect. Impacts could be reduced to small or negligible levels
 through the implementation of programmatic design features and by avoiding or minimizing

disturbance to occupied nesting habitats on the SEZ, such as those that may occur in ironwood
 communities in desert wash habitats. If avoidance or minimization is not a feasible option, a

3 compensatory mitigation plan could be developed and implemented to mitigate direct effects on

4 occupied habitats. Compensation could involve the protection and enhancement of existing

5 occupied or suitable nesting habitats to compensate for habitats lost to development. A

- 6 comprehensive mitigation strategy that used one or both of these options could be designed to
- 7 completely offset the impacts of development. The need for mitigation should first be determined
- 8 by conducting pre-disturbance surveys for the species and its habitat on the SEZ.
- 9 10

11

12

20

Ferruginous Hawk

The ferruginous hawk is a winter resident in the Riverside East SEZ region. According to the CAReGAP land cover model, approximately 112,197 acres (454 km²) of potentially suitable foraging habitat on the SEZ could be directly affected by construction and operations (Table 9.4.12.1-1). This direct impact area represents about 5.7% of available suitable habitat in the region. About 287,942 acres (1,165 km²) of potentially suitable habitat occurs in the area of potential indirect effect; this area represents about 14.6% of the available suitable habitat in the region (Table 9.4.12.1-1).

21 The overall impact on the ferruginous hawk from construction, operation, and 22 decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is 23 considered moderate because direct effects would occur only on potentially suitable foraging 24 habitat, and the amount of this habitat in the area of direct effects represents between 1 and 10% 25 of potentially suitable habitat in the SEZ region. The implementation of programmatic design features is expected to reduce indirect impacts to negligible levels. Avoidance of direct impacts 26 27 on all potentially suitable foraging habitat is not a feasible option for mitigating impacts on the 28 ferruginous hawk because potentially suitable shrubland is widespread throughout the area of 29 direct effects and readily available in other portions of the affected area.

30 31

32

33

Western Burrowing Owl

34 The western burrowing owl is known to occur in the SEZ area of indirect effects within 1 mi (1.6 km) east of the SEZ. According to the CAReGAP habitat suitability model, 35 approximately 202,844 acres (821 km²) of potentially suitable habitat on the SEZ could be 36 37 directly affected by construction and operations (Table 9.4.12.1-1). This direct impact area 38 represents 4.4% of available suitable habitat in the region. About 652,982 acres (2,642 km²) of 39 potentially suitable habitat occurs in the area of potential indirect effect; this area represents 40 about 14.0% of the available suitable habitat in the region (Table 9.4.12.1-1). Most of this area could serve as foraging and nesting habitat (shrublands). The abundance of burrows suitable for 41 42 nesting on the SEZ and in the area of indirect effects has not been determined.

43

44 The overall impact on the western burrowing owl from construction, operation, and 45 decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is 46 considered moderate because the amount of potentially suitable habitat for this species in the area of direct effects represents greater than 1% but less than 10% of potentially suitable habitat
in the SEZ region. The implementation of programmatic design features is expected to be
sufficient to reduce indirect impacts on this species to negligible levels.

4

5 Avoidance of all potentially suitable habitats is not feasible to mitigate impacts on the 6 western burrowing owl because potentially suitable desert scrub habitats are widespread 7 throughout the area of direct effect. However, impacts on the western burrowing owl could be 8 reduced by avoiding or minimizing disturbance to occupied burrows and habitat in the area of 9 direct effects. If avoidance or minimization of disturbance to all occupied habitat is not a feasible 10 option, a compensatory mitigation plan could be developed and implemented to mitigate direct effects. The protection and enhancement of existing occupied or suitable habitats could 11 12 compensate for habitats lost to development. A comprehensive mitigation strategy that used one 13 or both of these options could be designed to completely offset the impacts of development. The need for mitigation should first be determined by conducting pre-disturbance surveys for the 14 15 species and its habitat on the SEZ.

16 17

18

California Leaf-Nosed bat

19 20 The California leaf-nosed bat is a year-round resident in southern California within the 21 Riverside East SEZ region. Approximately 142.335 acres (576 km²) of potentially suitable 22 foraging habitat on the SEZ could be directly affected by construction and operations 23 (Table 9.4.12.1-1). This direct impact area represents about 3.6% of available suitable habitat in 24 the region. About 430,378 acres (1,742 km²) of potentially suitable habitat occurs in the area of potential indirect effect; this area represents about 10.8% of the available suitable habitat in the 25 26 region (Table 9.4.12.1-1). The potentially suitable habitat on the SEZ is primarily foraging 27 habitat (desert shrubland). However, on the basis of an evaluation of land cover types, 28 approximately 5,600 acres (23 km²) of rocky cliffs and outcrops that may be potentially suitable roosting habitat occurs on the SEZ. An additional 115,700 acres (468 km²) of rocky cliffs and 29 30 outcrops occurs in the area of direct effects.

31

The overall impact on the California leaf-nosed bat from construction, operation, and decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is considered moderate because the amount of potentially suitable habitat for this species in the area of direct effects represents greater than 1% but less than 10% of potentially suitable foraging habitat in the SEZ region. The implementation of programmatic design features is expected to reduce indirect impacts to negligible levels.

38

39 Avoidance of direct impacts on all foraging habitat (shrublands) is not feasible because 40 suitable foraging habitat (shrublands) is widespread in the area of direct effect and readily available in other portions of the affected area. However, avoiding or minimizing disturbance of 41 all potentially suitable roosting habitat (rocky cliffs and outcrops) on the SEZ is feasible and 42 43 could reduce impacts. If avoiding or minimizing disturbance of all occupied or suitable roosting habitat is not a feasible option, a compensatory mitigation plan could be developed and 44 45 implemented to mitigate direct effects. The protection and enhancement of existing occupied or 46 suitable habitats could compensate for habitats lost to development. A comprehensive mitigation strategy that uses one or both of these options could be designed to completely offset the impacts
of development. The need for mitigation, other than programmatic design features, should be
determined by conducting pre-disturbance surveys for the species and its habitat within the area
of direct effects.

5 6

7

8

Cave Myotis

9 The cave myotis is a year-round resident in the lower Colorado River Basin within the 10 Riverside East SEZ region. Approximately 142,335 acres (576 km²) of potentially suitable foraging habitat on the SEZ could be directly affected by construction and operations 11 12 (Table 9.4.12.1-1). This direct impact area represents about 3.4% of available suitable habitat in 13 the region. About 430,704 acres (1,742 km²) of potentially suitable habitat occurs in the area of potential indirect effect; this area represents about 10.4% of the available suitable habitat in the 14 region (Table 9.4.12.1-1). The potentially suitable habitat on the SEZ is primarily foraging 15 16 habitat (desert shrubland). However, on the basis of an evaluation of land cover types, approximately 5,600 acres (23 km²) of rocky cliffs and outcrops that may be potentially suitable 17 roosting habitat occurs on the SEZ. An additional 115,700 acres (468 km²) of rocky cliffs and 18 19 outcrops occurs in the area of direct effects.

20

The overall impact on the cave myotis from construction, operation, and decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is considered moderate because the amount of potentially suitable habitat for this species in the area of direct effects represents greater than 1% but less than 10% of potentially suitable foraging habitat in the SEZ region. The implementation of programmatic design features is expected to reduce indirect impacts to negligible levels.

27

28 Avoidance of direct impacts on all foraging habitat (shrublands) is not feasible because 29 suitable foraging habitat (shrublands) is widespread in the area of direct effects and readily 30 available in other portions of the affected area. However, avoiding or minimizing disturbance of all potentially suitable roosting habitat (rocky cliffs and outcrops) on the SEZ is feasible and 31 32 could reduce impacts. If avoiding or minimizing disturbance of all occupied or suitable roosting 33 habitat is not a feasible option, a compensatory mitigation plan could be developed and 34 implemented to mitigate direct effects. The protection and enhancement of existing occupied or 35 suitable habitats could compensate for habitats lost to development. A comprehensive mitigation strategy that uses one or both of these options could be designed to completely offset the impacts 36 37 of development. The need for mitigation, other than programmatic design features, should be 38 determined by conducting pre-disturbance surveys for the species and its habitat within the area 39 of direct effects.

- 40
- 41

42 Nelson's Bighorn Sheep

43

The Nelson's bighorn sheep (also called the desert bighorn sheep) is known to occur in
the affected area from the Joshua Tree Wilderness and Chuckwalla DWMA within 2 mi (3 km)
north, west, and south of the Riverside East SEZ. Sheep may utilize habitats within the SEZ as

migration corridors between these ranges. According to the CAReGAP habitat suitability model,
approximately 42,020 acres (170 km²) of potentially suitable habitat on the SEZ could be
directly affected by construction and operations (Table 9.4.12.1-1). This direct impact area
represents about 2.2% of available suitable habitat in the SEZ region. About 223,604 acres
(905 km²) of potentially suitable habitat occurs in the area of potential indirect effect; this area
represents about 11.8% of the available suitable habitat in the SEZ region (Table 9.4.12.1-1).

8 The overall impact on the Nelson's bighorn sheep from construction, operation, and 9 decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is 10 considered moderate because the amount of potentially suitable habitat for this species in the 11 area of direct effects represents greater than 1% but less than 10% of potentially suitable habitat 12 in the region. The implementation of programmatic design features alone is unlikely to 13 substantially reduce impacts.

14

25 26

27

7

15 Impacts on the Nelson's bighorn sheep could be reduced to small or negligible levels by 16 conducting pre-construction surveys and avoiding or minimizing disturbance to occupied habitats and important movement corridors on the SEZ. If avoidance or minimization is not a 17 18 feasible option, a compensatory mitigation plan could be developed and implemented to mitigate 19 direct effects on occupied habitats. Compensation could involve the protection and enhancement 20 of existing occupied or suitable habitats to compensate for habitats lost to development. A 21 comprehensive mitigation strategy that used one or both of these options could be designed to 22 completely offset the impacts of development. The need for mitigation should first be determined 23 by conducting pre-construction surveys for the species and its habitat on the SEZ. 24

Pallid Bat

28 The pallid bat is a year-round resident in southern California within the Riverside East 29 SEZ region. According to the CAReGAP land cover model, approximately 117,359 acres 30 (475 km^2) of potentially suitable foraging habitat on the SEZ could be directly affected by construction and operations (Table 9.4.12.1-1). This direct impact area represents about 3.2% of 31 available suitable habitat in the region. About 351,380 acres (1,421 km²) of potentially suitable 32 habitat occurs in the area of potential indirect effect; this area represents about 9.6% of the 33 34 available suitable habitat in the region (Table 9.4.12.1-1). The potentially suitable habitat on the 35 SEZ is primarily foraging habitat (desert shrubland). However, on the basis of an evaluation of 36 land cover types, approximately 5,600 acres (23 km²) of rocky cliffs and outcrops that may be 37 potentially suitable roosting habitat occurs on the SEZ. An additional 115,700 acres (468 km²) of 38 rocky cliffs and outcrops occurs in the area of direct effects.

39

The overall impact on the pallid bat from construction, operation, and decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is considered moderate because the amount of potentially suitable habitat for this species in the area of direct effects represents greater than 1% but less than 10% of potentially suitable foraging habitat in the SEZ region. The implementation of programmatic design features is expected to reduce indirect impacts to negligible levels.

1 Avoidance of direct impacts on all foraging habitat (shrublands) is not feasible because 2 suitable foraging habitat (shrublands) is widespread in the area of direct effects and readily 3 available in other portions of the affected area. However, avoiding or minimizing disturbance of 4 all potentially suitable roosting habitat (rocky cliffs and outcrops) on the SEZ is feasible and 5 could reduce impacts. If avoiding or minimizing disturbance of all occupied or suitable roosting 6 habitat is not a feasible option, a compensatory mitigation plan could be developed and 7 implemented to mitigate direct effects. The protection and enhancement of existing occupied or 8 suitable habitats could compensate for habitats lost to development. A comprehensive mitigation 9 strategy that uses one or both of these options could be designed to completely offset the impacts 10 of development. The need for mitigation, other than programmatic design features, should be determined by conducting pre-disturbance surveys for the species and its habitat within the area 11 12 of direct effects.

13 14

15

16

Palm Springs Pocket Mouse

The Palm Springs pocket mouse is not known to occur in the Riverside East SEZ affected area; however, according to the CAReGAP habitat suitability model, approximately 198,472 acres (803 km²) of potentially suitable habitat on the SEZ could be directly affected by construction and operations (Table 9.4.12.1-1). This direct impact area represents about 5.3% of available suitable habitat in the SEZ region. About 512,782 acres (2,075 km²) of potentially suitable habitat occurs in the area of potential indirect effect; this area represents about 13.7% of the available suitable foraging habitat in the SEZ region (Table 9.4.12.1-1).

24

The overall impact on the Palm Springs pocket mouse from construction, operation, and decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is considered moderate because the amount of potentially suitable habitat for this species in the area of direct effects represents greater than 1% but less than 10% of potentially suitable foraging habitat in the SEZ region. The implementation of programmatic design features alone is unlikely to substantially reduce impacts.

32 Avoidance of all potentially suitable habitats is not a feasible option for mitigating 33 impacts on the Palm Springs pocket mouse because potentially suitable desertscrub habitats are 34 widespread throughout the area of direct effects. Impacts could be reduced to negligible levels 35 through the implementation of programmatic design features and avoidance or minimization of 36 disturbance to occupied habitats on the SEZ. If avoidance or minimization is not a feasible 37 option, a compensatory mitigation plan could be developed and implemented to mitigate direct 38 effects on occupied habitats. The protection and enhancement of existing occupied or suitable 39 habitats could compensate for habitats lost to development. A comprehensive mitigation strategy 40 that uses one or both of these options could be designed to completely offset the impacts of development. The need for mitigation should first be determined by conducting preconstruction 41 42 surveys for the species and its habitat on the SEZ. 43

- 43
- 44
- 45

Spotted Bat

3 The spotted bat is considered to be a rare year-round resident in the Riverside East SEZ 4 region. According to the CAReGAP land cover model, approximately 111,719 acres (452 km²) 5 of potentially suitable habitat on the SEZ could be directly affected by construction and 6 operations (Table 9.4.12.1-1). This direct impact area represents about 4.7% of available suitable 7 foraging habitat in the SEZ region. About 235,684 acres (954 km²) of potentially suitable habitat 8 occurs in the area of potential indirect effect; this area represents about 10.0% of the available 9 suitable habitat in the SEZ region (Table 9.4.12.1-1). The potentially suitable habitat on the SEZ 10 is primarily foraging habitat (desert shrubland); however, suitable roosting habitat may occur on the SEZ. On the basis of an evaluation of land cover types, approximately 5,600 acres (23 km²) 11 12 of rocky cliffs and outcrops that may be potentially suitable roosting habitat occurs on the SEZ. 13 An additional 115,700 acres (468 km²) of rocky cliffs and outcrops occurs in the area of direct 14 effects.

15

16 The overall impact on the spotted bat from construction, operation, and decommissioning 17 of utility-scale solar energy facilities within the Riverside East SEZ is considered moderate 18 because the amount of potentially suitable habitat for this species in the area of direct effects 19 represents greater than 1% but less than 10% of potentially suitable foraging habitat in the SEZ 20 region. The implementation of programmatic design features is expected to reduce indirect 21 impacts to negligible levels.

22

23 Avoidance of direct impacts on all foraging habitat (shrublands) is not feasible because 24 suitable foraging habitat (shrublands) is widespread in the area of direct effects and readily 25 available in other portions of the affected area. However, avoiding or minimizing disturbance of 26 all potentially suitable roosting habitat (rocky cliffs and outcrops) on the SEZ is feasible and 27 could reduce impacts. If avoiding or minimizing disturbance of all occupied or suitable roosting 28 habitat is not feasible, a compensatory mitigation plan could be developed and implemented to 29 mitigate direct effects. The protection and enhancement of existing occupied or suitable habitats 30 could compensate for habitats lost to development. A comprehensive mitigation strategy that 31 uses one or both of these options could be designed to completely offset the impacts of 32 development. The need for mitigation, other than programmatic design features, should be 33 determined by conducting pre-disturbance surveys for the species and its habitat within the area 34 of direct effects.

- 35
- 36 37

Townsend's Big-Eared Bat

The Townsend's big-eared bat is a year-round resident in the Riverside East SEZ region. According to the CAReGAP land cover model, approximately 202,912 acres (821 km²) of potentially suitable foraging habitat on the SEZ could be directly affected by construction and operations (Table 9.4.12.1-1). This direct impact area represents about 4.0% of available suitable habitat in the SEZ region. About 655,256 acres (2,651 km²) of potentially suitable habitat occurs in the area of potential indirect effect; this area represents about 12.9% of the available suitable habitat in the SEZ region (Table 9.4.12.1-1). The potentially suitable habitat on the SEZ is

46 primarily foraging habitat (desert shrubland). However, on the basis of an evaluation of land

- cover types, approximately 1,500 acres (6 km²) of rocky cliffs and outcrops that may be
 potentially suitable roosting habitat occurs on the SEZ. An additional 41,000 acres (166 km²) of
 rocky cliffs and outcrops occurs in the area of direct effects.
- 5 The overall impact on the Townsend's big-eared bat from construction, operation, and 6 decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is 7 considered moderate because the amount of potentially suitable habitat for this species in the 8 area of direct effects represents greater than 1% but less than 10% of potentially suitable 9 foraging habitat in the SEZ region. The implementation of programmatic design features is 10 expected to reduce indirect impacts to negligible levels.
- 11

12 Avoidance of direct impacts on all foraging habitat (shrublands) is not feasible because 13 suitable foraging habitat (shrublands) is widespread in the area of direct effects and readily available in other portions of the affected area. However, avoiding or minimizing disturbance of 14 all potentially suitable roosting habitat (rocky cliffs and outcrops) on the SEZ is feasible and 15 16 could reduce impacts. If avoiding or minimizing disturbance of all occupied or suitable roosting 17 habitat is not feasible, a compensatory mitigation plan could be developed and implemented to mitigate direct effects. The protection and enhancement of existing occupied or suitable habitats 18 19 could compensate for habitats lost to development. A comprehensive mitigation strategy that 20 uses one or both of these options could be designed to completely offset the impacts of 21 development. The need for mitigation, other than programmatic design features, should be determined by conducting pre-disturbance surveys for the species and its habitat within the area 22 23 of direct effects.

24 25

26

27

Western Mastiff Bat

28 The western mastiff bat is a year-round resident in the Riverside East SEZ region. 29 According to the CAReGAP land cover model, approximately 202,912 acres (821 km²) of 30 potentially suitable foraging habitat on the SEZ could be directly affected by construction and 31 operations (Table 9.4.12.1-1). This direct impact area represents about 5.0% of available suitable habitat in the SEZ region. About 655,256 acres (2,651 km²) of potentially suitable habitat occurs 32 33 in the area of potential indirect effect; this area represents about 16.1% of the available suitable 34 habitat in the SEZ region (Table 9.4.12.1-1). The potentially suitable habitat on the SEZ is 35 primarily foraging habitat (desert shrubland). However, on the basis of an evaluation of land cover types, approximately 5,600 acres (23 km²) of rocky cliffs and outcrops that may be 36 37 potentially suitable roosting habitat occurs on the SEZ. An additional 115,700 acres (468 km²) of 38 rocky cliffs and outcrops occurs in the area of direct effects.

39

The overall impact on the western mastiff bat from construction, operation, and decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is considered moderate because the amount of potentially suitable habitat for this species in the area of direct effects represents greater than 1% but less than 10% of potentially suitable foraging habitat in the SEZ region. The implementation of programmatic design features is expected to reduce indirect impacts to negligible levels.

1 Avoidance of direct impacts on all foraging habitat (shrublands) is not feasible because 2 suitable foraging habitat (shrublands) is widespread in the area of direct effects and readily 3 available in other portions of the affected area. However, avoiding or minimizing disturbance of 4 all potentially suitable roosting habitat (rocky cliffs and outcrops) on the SEZ is feasible and 5 could reduce impacts. If avoiding or minimizing disturbance of all occupied or suitable roosting 6 habitat is not feasible, a compensatory mitigation plan could be developed and implemented to 7 mitigate direct effects. The protection and enhancement of existing occupied or suitable habitats 8 to compensate for habitats lost to development. A comprehensive mitigation strategy that uses 9 one or both of these options could be designed to completely offset the impacts of development. 10 The need for mitigation, other than programmatic design features, should be determined by conducting pre-disturbance surveys for the species and its habitat within the area of direct 11 12 effects.

13 14

15

16

Western Small-Footed Myotis

17 The western small-footed myotis is a year-round resident in the Riverside East SEZ region. According to the CAReGAP land cover model, approximately 25,199 acres (102 km²) of 18 19 potentially suitable foraging habitat on the SEZ could be directly affected by construction and 20 operations (Table 9.4.12.1-1). This direct impact area represents about 3.8% of available suitable 21 foraging habitat in the SEZ region. About 79,658 acres (322 km²) of potentially suitable foraging 22 habitat occurs in the area of potential indirect effect; this area represents about 12.0% of the 23 available suitable foraging habitat in the SEZ region (Table 9.4.12.1-1). The potentially suitable 24 habitat on the SEZ is primarily foraging habitat (desert shrubland). However, on the basis of an 25 evaluation of land cover types, approximately 5,600 acres (23 km²) of rocky cliffs and outcrops that may be potentially suitable roosting habitat occurs on the SEZ. An additional 115,700 acres 26 27 (468 km²) of rocky cliffs and outcrops occurs in the area of direct effects.

28

The overall impact on the western small-footed myotis from construction, operation, and decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is considered moderate because the amount of potentially suitable habitat for this species in the area of direct effects represents greater than 1% but less than 10% of potentially suitable foraging habitat in the SEZ region. The implementation of programmatic design features is expected to reduce indirect impacts to negligible levels.

35

36 Avoidance of direct impacts on all foraging habitat (shrublands) is not feasible because 37 suitable foraging habitat (shrublands) is widespread in the area of direct effects and readily 38 available in other portions of the affected area. However, avoiding or minimizing disturbance of 39 all potentially suitable roosting habitat (rocky cliffs and outcrops) on the SEZ is feasible and 40 could reduce impacts. If avoiding or minimizing disturbance of all occupied or suitable roosting habitat is not feasible, a compensatory mitigation plan could be developed and implemented to 41 42 mitigate direct effects. The protection and enhancement of existing occupied or suitable habitats 43 could compensate for habitats lost to development. A comprehensive mitigation strategy that uses one or both of these options could be designed to completely offset the impacts of 44 45 development. The need for mitigation, other than programmatic design features, should be

determined by conducting pre-disturbance surveys for the species and its habitat within the area
 of direct effects.
 3

Western Yellow Bat

7 The western yellow bat is a year-round resident in the Riverside East SEZ region. 8 According to the CAReGAP land cover model, approximately 25,199 acres (102 km²) of 9 potentially suitable foraging habitat on the SEZ could be directly affected by construction and 10 operations (Table 9.4.12.1-1). This direct impact area represents about 1.9% of available suitable foraging habitat in the SEZ region. About 79,658 acres (322 km²) of potentially suitable foraging 11 12 habitat occurs in the area of potential indirect effect; this area represents about 5.9% of the 13 available suitable foraging habitat in the SEZ region (Table 9.4.12.1-1). The potentially suitable habitat on the SEZ is primarily foraging habitat (desert shrubland). However, on the basis of an 14 evaluation of land cover types, approximately 223 acres (1 km²) of riparian woodlands that may 15 16 be potentially suitable roosting habitat occurs on the SEZ. An additional 335 acres (1.5 km²) of 17 riparian woodlands occurs in the area of direct effects.

18

4 5

6

The overall impact on the western yellow bat from construction, operation, and decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is considered moderate because the amount of potentially suitable habitat for this species in the area of direct effects represents greater than 1% but less than 10% of potentially suitable foraging habitat in the SEZ region. The implementation of programmatic design features is expected to reduce indirect impacts to negligible levels.

25

26 Avoidance of direct impacts on all foraging habitat (shrublands) is not feasible because 27 suitable foraging habitat (shrublands) is widespread in the area of direct effects and readily 28 available in other portions of the affected area. However, avoiding or minimizing disturbance of 29 all potentially suitable roosting habitat (riparian woodlands) on the SEZ is feasible and could 30 reduce impacts. If avoiding or minimizing disturbance of all occupied or suitable roosting habitat 31 is not feasible, a compensatory mitigation plan could be developed and implemented to mitigate 32 direct effects. The protection and enhancement of existing occupied or suitable habitats could 33 compensate for habitats lost to development. A comprehensive mitigation strategy that uses one 34 or both of these options could be designed to completely offset the impacts of development. The 35 need for mitigation, other than programmatic design features, should be determined by 36 conducting pre-disturbance surveys for the species and its habitat within the area of direct 37 effects.

- 38
- 39
- 40 41

9.4.12.2.3 Impacts on State-Listed Species

There are two species listed by the State of California that could occur in the affected area of the Riverside East SEZ (Section 9.4.12.1.3; Table 9.4.12.1-1)—desert tortoise and Gila woodpecker. Impacts on the desert tortoise are discussed in Section 9.4.12.2.1 because of the status of this species under the ESA; impacts on the Gila woodpecker are discussed below. The Gila woodpecker is not known to occur in the affected area of the Riverside East SEZ. However, the species is known to occur along the Colorado River about 6 mi (10 km) east of the SEZ. According to the CAReGAP habitat suitability model, there is no suitable habitat for this species on the SEZ (Table 9.4.12.1-1). However, about 300 acres (1 km²) of potentially suitable habitat occurs in the area of potential indirect effect; this area represents about 0.1% of the available suitable habitat in the SEZ region (Table 9.4.12.1-1).

8 The overall impact on the Gila woodpecker from construction, operation, and 9 decommissioning of utility-scale solar energy facilities within the Riverside East SEZ is 10 considered small because no suitable habitat occurs on the SEZ and only indirect effects are 11 possible. The implementation of programmatic design features would reduce indirect impacts to 12 negligible levels. No species-specific mitigation for the Gila woodpecker is feasible or 13 warranted.

14

7

15 16

17

9.4.12.2.4 Impacts on Rare Species

There are 69 species with a state rank of S1 or S2 in California or considered a species of concern by the State of California or USFWS that may occur in the affected area of the Riverside East SEZ. Impacts have been previously discussed for 27 of these species that are also listed under the ESA (Section 9.4.12.2.1), BLM-designated sensitive (Section 9.4.12.2.2), or statelisted (Section 9.4.12.2.3). Impacts on the remaining 42 rare species that do not have any other special status designation are presented in Table 9.4.12.1-1.

- 24 25
- 26 27

33

9.4.12.3 SEZ-Specific Design Features and Design Feature Effectiveness

The implementation of required programmatic design features described in Appendix A, Section A.2.2, would greatly reduce or eliminate the potential for effects of utility-scale solar energy development on special status species. While some SEZ-specific design features are best established when project details are being considered, some design features can be identified at this time, including the following:

34 Pre-disturbance surveys should be conducted within the SEZ to determine the • 35 presence and abundance of special status species, including those identified in 36 Table 9.4.12.1-1; disturbance to occupied habitats for these species should be 37 avoided or minimized to the extent practicable. If avoiding or minimizing 38 impacts to occupied habitats is not possible, translocation of individuals from 39 areas of direct effects, or compensatory mitigation of direct effects on 40 occupied habitats could reduce impacts. A comprehensive mitigation strategy 41 for special status species that uses one or more of these options to offset the 42 impacts of development should be developed in coordination with the 43 appropriate federal and state agencies. 44

Disturbance of desert playa and wash habitats within the SEZ should be
 avoided or minimized to the extent practicable. In particular, development

1 2 3		should be avoided in and near Ford Dry Lake, Palen Lake, and McCoy Wash within the SEZ. Adverse impacts on the following species could be reduced with the avoidance of these playas and desert wash habitats on the SEZ: alkali
4		mariposa-lily, California saw-grass, Coves' cassia, Emory's crucifixion-thorn,
5		Jackass-clover, Salt Spring checkerbloom, sand evening-primrose, Roberts'
6 7		rhopalolemma bee, and crissal thrasher.
/ Q	•	Avoidance or minimization of disturbance to send dune habitate and send
0	•	transport systems on the SEZ could reduce impacts on several special status
10		species including the chaparral sand-verbena dwarf germander giant
11		Spanish-needle Harwood's eriastrum jackass-clover little San Bernardino
12		Mountains linanthus and Mojave fringe-toed lizard
13		
14	•	Consultations with the USFWS and the CDFG should be conducted to address
15		the potential for impacts on the desert tortoise, a species listed as threatened
16		under the ESA and CESA. Consultation would identify an appropriate survey
17		protocol, avoidance measures, and, if appropriate, reasonable and prudent
18		alternatives, reasonable and prudent measures, and terms and conditions for
19		incidental take statements.
20		
21	•	Harassment or disturbance of special status species and their habitats in the
22		affected area should be mitigated. This can be accomplished by identifying
23		any additional sensitive areas and implementing necessary protection
24		measures based upon consultation with the USFWS and CDFG.
25		
26	If	these SEZ-specific design features are implemented in addition to required
27	programm	natic design features, impacts on the special status and rare species would be reduced.
28		

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	<i>This page intentionally left blank.</i>
14	
15	

1	9.4.1
2	
3	
4	
5	
6	
7	
8	
9	
0	south
1	south
2	whic
3	swin
4	Mete
5	easte
6	Cubic
17	
8	2009
9	Duri
20	with
21	north
22	alterr
23	the m
24	throu
25	terrai
26	freau
27	radia
28	seaso
29	(3.31
30	(
31	
-	72 77

9.4.13 Air Quality and Climate

9.4.13.1 Affected Environment

9.4.13.1.1 Climate

The proposed Riverside East SEZ is located in the eastern portion of Riverside County in neastern California. The SEZ, with an average elevation of 580 ft (177 m), straddles the hernmost portion of the Mojave Desert and northernmost portion of the Sonoran Desert, h has an extremely arid climate—mild winters and hot summers, large daily temperature gs, scant precipitation, high evaporation rates, low relative humidity, and abundant sunshine. corological data collected at the Blythe Airport,⁷ which is about 1.5 mi (2.4 km) east of the rn boundary of the Riverside East SEZ, are summarized below.

A wind rose from the Blythe Airport in Blythe, California, for the 5-year period 2005 to and taken at a level of 33 ft (10 m) is presented in Figure 9.4.13.1-1 (NCDC 2010a).8 ng this period, the annual average wind speed at the airport was about 7.6 mph (3.4 m/s), a prevailing wind direction from the south (about 13% of the time) and secondarily from the -northwest (about 9% of the time), parallel to nearby mountain ranges. Wind directions nated between north-northwest (March, May, August, and October) and south (the rest of nonths) throughout the year. In California, wind flow is generally from the west or northwest ighout the year, but the prevailing wind direction for a given site is influenced by local in (NCDC 2010b). Wind speeds categorized as calm (less than 1.1 mph [0.5 m/s]) occurred ently (almost one-fifth of the time) because of the stable conditions caused by strong tive cooling from late night to sunrise. Average wind speeds were relatively uniform by on; the highest was in summer and fall, at 7.8 mph (3.5 m/s); lower in winter, at 7.4 mph m/s), respectively; and lowest in spring, at 7.2 mph (3.2 m/s).

For the period 1948 to 2009, the annual average temperature at the Blythe Airport was 73.7°F (23.2°C) (WRCC 2010b). December was the coldest month with an average minimum 32 33 temperature of 41.2°F (5.1°C), and July was the warmest month with an average maximum of 108.4°F (42.4°C). On most days in summer, daytime maximum temperatures were in the 100s, 34 35 and minimums were in the low 70s or higher. The minimum temperatures recorded were below 36 freezing (\leq 32°F [0°C]) on about 2 to 3 days of the colder months (December and January), but 37 subzero temperatures were never recorded. During the same period, the highest temperature, 38 $123^{\circ}F$ (50.6°C), was reached in June 1994, and the lowest, 20°F (-6.7°C), in January 1971.

Eagle Mountain station is located about 0.6 mi (1.0 km) from the western edge of the SEZ at an elevation of about 970 ft (296 m), which is higher than the elevation of Blythe Airport, at about 390 ft (119 m). The station also has collected temperature and precipitation data since 1933. Temperatures are a little lower and precipitation is a little higher at the Eagle Mountain station than at the Blythe Airport.

⁸ Note that the Riverside East SEZ is spread over a wide area, about 50 mi (80 km) east-west and 25 mi (40 km) north-south and is in complex terrains. Accordingly, wind patterns at a location of interest might vary depending on elevation, orientation, and proximity to nearby mountains.

FIGURE 9.4.13.1-1 Wind Rose at 33-ft (10-m) Height at Blythe Airport, Blythe, California,
 2005–2009 (Source: NCDC 2010a)

1 In a typical year, about 176 days had a maximum temperature of \geq 90°F (32.2°C), while more 2 than 5 days had a minimum temperature at or below freezing.

3 4 Pacific air masses lose most of their moisture on the windward side of mountain ranges 5 parallel to the California coastline. Thus, leeward areas like the Riverside East SEZ experience 6 a lack of precipitation. For the period 1948 to 2009, annual precipitation at the Blythe Airport 7 averaged about 3.53 in. (9.0 cm) (WRCC 2010b). There is an average of 17 days annually with 8 measurable precipitation (0.01 in. [0.025 cm] or higher). About 37% of the annual precipitation 9 occurs during winter months, and 15% in spring, and the rest in summer and fall in almost equal 10 amounts. No measurable snowfall was recorded at the Blythe Airport 11

Because the area surrounding the proposed Riverside East SEZ is far from major water bodies (more than 120 mi [193 km]) and because surrounding mountain ranges block air masses from penetrating into the area, severe weather events, such as hurricanes and tornadoes, are rare.

Since 1993, 137 floods (about 70% of which were flash floods), with peaks in July and
August, have been reported in Riverside County (NCDC 2010c) and caused 6 deaths, 14 injuries,
and considerable property and crop damage in total.

20 In Riverside County, 25 hail storms in total have been reported since 1960 and caused 21 2 injuries and minor property and crop damage. Hail measuring 2.75 in. (7.0 cm) in diameter was 22 reported in 1960. In Riverside County, 112 high-wind events, peaking in winter months, have 23 been reported since 1996 and caused 8 deaths, 68 injuries, and significant property and crop 24 damage (NCDC 2010c). A high-wind event with a maximum wind speed of 120 mph (53.5 m/s) 25 occurred in 1999. Since 1973, 87 thunderstorm wind events, peaking in summer months, have been reported and caused some property damage and minor crop damage. Many thunderstorms 26 27 in California are accompanied by little to no precipitation, and lightning strikes sometimes cause 28 forest fires (NCDC 2010b).

Since 1998, 15 dust storms have been reported in Riverside County (NCDC 2010c). The
ground surface of the SEZ is covered predominantly with gravelly loams of alluvial fan terraces,
which have relatively moderate dust storm potential. High winds can trigger large amounts of
blowing dust in areas of Riverside County that have dry and loose soils with sparse vegetation.
Dust storms can deteriorate air quality and visibility and have adverse effects on health..

Hurricanes and tropical storms formed off the coast of Central America and Mexico
 weaken over the cold waters off the California coast. Accordingly, hurricanes rarely hit
 California. Historically, four tropical storms/depressions have passed within 100 mi (160 km) of
 the proposed Riverside East SEZ (CSC 2010). Tornadoes in Riverside County, which
 encompasses the proposed Riverside East SEZ, occur infrequently. In the period 1950 to

- 41 June 2010, a total of 19 tornadoes (0.3 per year) were reported in Riverside County
- 42 (NCDC 2010c). However, most tornadoes occurring in Riverside County were relatively weak
- 43 (i.e., 1 was uncategorized, 16 were weak F0 or F1, and 2 were strong F2 or F3 on the Fujita
- 44 tornado scale). Several of these tornadoes caused two injuries and some property damage in total.
- 45 Most tornadoes in Riverside County were reported far from the proposed Riverside East SEZ,

29

except one F3 and one F0 tornadoes, which hit the area about 4 mi (6 km) east and 1 mi (1.6 km) south of the SEZ.

9.4.13.1.2 Existing Air Emissions

7 Riverside County has many industrial emission sources, 8 which are mainly concentrated over the Valley Region near the 9 City of Riverside. More than ten point source emissions are 10 located around the proposed SEZ, mostly to the east in Blythe, and their annual emissions are relatively minor, except for a 11 12 major source, the Southern California Gas Company 13 compressor station in Blythe. Mobile source emissions are 14 substantial, because the county is crossed by several interstate 15 highways, including I-10, I-15, and I-215. Data on annual 16 emissions of criteria pollutants and VOCs in Riverside County 17 are presented in Table 9.4.13.1-1 for 2002 (WRAP 2009). 18 Emission data are classified into six source categories: point, 19 area, onroad mobile, nonroad mobile, biogenic, and fire 20 (wildfires, prescribed fires, agricultural fires, structural fires). In 21 2002, nonroad sources were major contributors to total SO₂ 22 emissions (about 47%) and secondary contributors to total NO_x 23 emissions (about 27%). Onroad sources were major contributors 24 to NO_x and CO emissions (about 61% and 64%, respectively) 25 and secondary contributors to SO₂ emissions (about 31%). 26 Biogenic sources (i.e., vegetation-including trees, plants, and 27 crops—and soils) that release naturally occurring emissions 28 accounted for most VOC emissions (about 87%). Area sources 29 were primary contributors to PM emissions, which accounted 30 for about 88% of PM10 and 67% of PM2.5. Point and fire 31 sources are minor contributors to criteria pollutants and VOCs 32 in Riverside County. 33 In 2006, California produced about 483.9 MMt of

34

gross⁹ carbon dioxide equivalent (CO₂e)¹⁰ emissions (CARB 35

2010a). Gross greenhouse gas (GHG) emissions in California

36

- 37 increased by about 12% from 1990 to 2006, which was three-fourths of the increase in the
- 38 national rate (about 16%). In 2006, transportation (38%) and electricity use (22%) were the
- 39 primary contributors to gross GHG emission sources in California. Fossil fuel use in the

TABLE 9.4.13.1-1 Annual **Emissions of Criteria Pollutants and VOCs in Riverside County, California, Encompassing the Proposed** Riverside East SEZ, 2002^a

Pollutant ^b	Emissions (tons/yr)	
SO2	785	
NO _x	55,220	
CO	240,193	
VOCs	267,693	
PM ₁₀	22,651	
PM _{2.5}	6,934	

Includes point, area, onroad and nonroad mobile, biogenic, and fire emissions.

b Notation: CO = carbon monoxide; $NO_x = nitrogen$ oxides; $PM_{2,5} = particulate$ matter with a diameter of $\leq 2.5 \ \mu m; PM_{10} = particulate$ matter with a diameter of $\leq 10 \ \mu m; SO_2 = sulfur dioxide;$ and VOCs = volatile organic compounds.

Source: WRAP (2009).

⁹ Excluding GHG emissions removed as a result of forestry and other land uses and excluding GHG emissions associated with exported electricity.

¹⁰ A measure used to compare the emissions from various GHGs on the basis of their global warming potential, defined as the cumulative radiative forcing effects of a gas over a specified time horizon resulting from the emission of a unit mass of gas relative to a reference gas, CO_2 . The CO_2e for a gas is derived by multiplying the mass of the gas by the associated global warming potential.

1 residential, commercial, and industrial sectors combined accounted for about 29% of total state 2 emissions. California's net emissions were about 479.8 MMt CO2e, considering carbon sinks 3 from forestry activities and agricultural soils throughout the state. The U.S. Environmental 4 Protection Agency (EPA 2009a) also estimated 2005 emissions in California. Its estimate of CO2 5 emissions from fossil fuel combustion was 390.6 MMt, which was comparable to the state's 6 estimate. The transportation and residential, commercial, and industrial sectors accounted for 7 about 59% and 30% of the CO₂ emissions total, respectively, while electric power generation 8 accounted for the remainder (about 11%).

9 10

11

9.4.13.1.3 Air Quality

12 CAAQS address the same six criteria pollutants as the NAAQS (CARB 2010b;
14 EPA 2010a): SO₂, NO₂, CO, O₃, PM₁₀, PM_{2.5}, and Pb. CAAQS are more stringent than
15 NAAQS for most criteria pollutants. In addition, California has set standards for some pollutants
16 not addressed by NAAQS—visibility-reducing particles, sulfates, hydrogen sulfide, and vinyl
17 chloride. The NAAQS and CAAQS for criteria pollutants are presented in Table 9.4.13.1-2.

19 Most of Riverside County is located administratively within the Southeast Desert 20 Intrastate AQCR (Title 40, Part 81, Section 167 of the Code of Federal Regulations 21 [40 CFR 81.167]), along with parts of Kern, Los Angeles, and San Bernardino Counties, and all 22 of Imperial County. In addition, the Riverside East SEZ is located within the Mojave Desert Air 23 Basin, one of 15 geographic air basins designated for the purpose of managing air resources in 24 California, which also includes the desert portions of Kern, Los Angeles, Riverside, and San 25 Bernardino Counties. Currently, the area surrounding the proposed SEZ is designated as being in 26 unclassifiable/attainment of NAAQS for all criteria pollutants (40 CFR 81.305). However, the 27 area is designated as a nonattainment area for O₃ and PM₁₀ based on CAAQS (CARB 2010c). 28

With a low population density, the Mojave Desert area has no significant emission sources of its own, except mobile emissions along interstate highways. Air quality in the Mojave Desert area primarily depends on upwind emissions transported from the South Coast Air Basin, including Los Angeles. As a result of upwind emission controls, air quality of the Mojave Desert area has improved, but concentrations of ozone are still relatively high.

35 There are no ambient air-monitoring stations in Riverside County near the proposed 36 Riverside East SEZ, except an ozone-monitoring station in Joshua Tree NP and Blythe. To 37 characterize ambient air quality around the SEZ, two monitoring stations in the Coachella Valley 38 of Riverside County were chosen: Indio, about 44 mi (71 km), and Palm Springs, about 62 mi 39 (100 km) west of the SEZ. These monitoring stations, which are not in the Mojave Desert area 40 but upwind of the SEZ along I-10, are considered representative of the proposed SEZ, although 41 the Coachella Valley is designated as a nonattainment area for PM₁₀. Ambient concentrations of 42 O₃, PM₁₀, and PM₂ 5 are recorded at Indio, while those of NO₂, CO, O₃, PM₁₀, and PM₂ 5 are 43 recorded at Palm Springs. No SO₂ and Pb measurements are made either in the Mojave Desert 44 area or in the Coachella Valley, so their measurements from Rubidoux are presented to 45 demonstrate that these pollutants are not a concern in Riverside County. The background 46 concentrations of criteria pollutants at these stations for the period 2004 to 2008 are presented in

				Background Concentration Level		
Pollutant ^a	Averaging Time	NAAQS	CAAQS	Concentration ^{b,c}	Measurement Location, Year	
SO ₂	1-hour	0.075 ppm ^d	0.25 ppm	0.019 ppm (NA; 7.6%)	Rubidoux, 2005	
	3-hour	0.5 ppm	NA ^e	0.015 ppm (3.0%; NA)	Rubidoux, 2004	
	24-hour	0.14 ppm	0.04 ppm	0.015ppm (11%; 38%)	Rubidoux, 2004	
	Annual	0.030 ppm	NA	0.004 ppm (13%; NA)	Rubidoux, 2005	
NO ₂	1-hour	0.100 ppm ^f	0.18 ppm	0.085 ppm (NA; 47%)	Palm Springs, 2006	
	Annual	0.053 ppm	0.030 ppm	0.013 ppm (25%; 43%)	Palm Springs, 2004	
СО	1-hour	35 ppm	20 ppm	2.0 ppm (5.7%; 10%)	Palm Springs, 2005	
	8-hour	9 ppm	9.0 ppm	0.8 ppm (8.9%; 8.9%)	Palm Springs, 2006	
O ₃	1-hour	0.12 ppm ^g	0.09 ppm	0.098 ppm (NA; 109%)	Joshua Tree NP, 2008	
	8-hour	0.075 ppm	0.070 ppm	0.084 ppm (112%; 120%)	Joshua Tree NP, 2008	
PM ₁₀	24-hour Annual	$\frac{150 \ \mu g/m^3}{NA^h}$	50 μg/m ³ 20 μg/m ³	157 μg/m ³ (105%; 314%) 56 μg/m ³ (NA; 280%)	Indio, 2007 Indio, 2007	
PM _{2.5}	24-hour	35 μg/m ³	NA	26.8 μg/m ³ (77%; NA)	Indio, 2004	
	Annual	15.0 μg/m ³	12 μg/m ³	10.8 μg/m ³ (72%; 90%)	Indio, 2004	
Pb	30-day	NA	1.5 μg/m ³	NA	NA	
	Calendar quarter	1.5 μg/m ³	NA	0.02 μg/m ³ (1.3%; NA)	Rubidoux, 2005	
	Rolling 3-month	0.15 μg/m ^{3 i}	NA	NA	NA	

TABLE 9.4.13.1-2 NAAQS, CAAQS, and Background Concentration Levels Representative of the Proposed Riverside East SEZ in Riverside County, California, 2004–2008

^a Notation: CO = carbon monoxide; NO₂ = nitrogen dioxide; O₃ = ozone; Pb = lead; PM_{2.5} = particulate matter with a diameter of $\leq 2.5 \mu m$; PM₁₀ = particulate matter with a diameter of $\leq 10 \mu m$; and SO₂ = sulfur dioxide.

^b Monitored concentrations are the highest for calendar-quarter Pb; second-highest for all averaging times less than or equal to 24-hour averages, except fourth-highest daily maximum for 8-hour O₃ and the 98th percentile for 24-hour PM_{2.5}; and arithmetic mean for annual SO₂, NO₂, PM₁₀, and PM_{2.5}.

^c Values in parentheses are background concentration levels as a percentage of NAAQS and CAAQS, respectively. Calculation of 1-hour SO₂, 1-hour NO₂, and rolling 3-month Pb to NAAQS was not made, because no measurement data based on new NAAQS are available.

^d Effective August 23, 2010.

^e NA = not applicable or not available.

^f Effective April 12, 2010.

- ^g The EPA revoked the 1-hour O₃ standard in all areas, although some areas have continuing obligations under that standard ("anti-backsliding").
- ^h Effective December 18, 2006, the EPA revoked the annual PM_{10} standard of 50 µg/m³.

ⁱ Effective January 12, 2009.

Sources: CARB (2010b); EPA (2010a,b).

Table 9.4.13.1-2 (EPA 2010b). Monitored SO₂, NO₂, CO, and Pb levels were lower than their
respective standards (up to 47%). Monitored O₃ and PM₁₀ concentrations exceeded both
NAAQS and CAAQS. Monitored PM_{2.5} levels were lower than NAAQS and CAAQS but
approaching CAAQS.

5

6 The PSD regulations (see 40 CFR 52.21), which are designed to limit the growth of air 7 pollution in clean areas, apply to a major new source or modification of an existing major source 8 within an attainment or unclassified area (see Section 4.11.2.3). As a matter of policy, the EPA 9 recommends that the permitting authority notify Federal Land Managers when a proposed PSD 10 source would locate within 62 mi (100 km) of a sensitive Class I area. There are several Class I areas around the Riverside East SEZ, only one of which is situated within 62 mi (100 km). The 11 12 nearest Class I area is the Joshua Tree NP (40 CFR 81.405), adjacent to the Riverside East SEZ. 13 The eastern portion of this Class I area is located downwind of prevailing winds at the Riverside 14 East SEZ (Figure 9.4.13.1-1) and thus would be affected by activities at the proposed SEZ. The next nearest Class I areas are located beyond 62 mi (100 km), the San Jacinto WA and the San 15 16 Gorgonio WA, which are about 66 mi (106 km) west and 73 mi (117 km) west-northwest of the 17 Riverside East SEZ, respectively.

9.4.13.2 Impacts

22 Potential impacts on ambient air quality associated with a solar project would be of 23 most concern during the construction phase. Impacts on ambient air quality from fugitive dust 24 emissions resulting from soil disturbances are anticipated, but they would be of short duration. 25 During the operations phase, only a few sources with generally low-level emissions would exist for any of the four types of solar technologies evaluated. A solar facility would either not burn 26 27 fossil fuels or burn only small amounts during operation. (For facilities using heat transfer fluids 28 [HTFs], fuel could be used to maintain the temperature of the HTFs for more efficient daily 29 start-up.) Conversely, solar facilities would displace air emissions that would otherwise be 30 released from fossil fuel-fired power plants.

31

18 19 20

21

Air quality impacts shared by all solar technologies are discussed in detail in Section 5.11.1, and technology-specific impacts are discussed in Section 5.11.2. Impacts specific to the proposed Riverside East SEZ are presented in the following sections. Any such impacts would be minimized through the implementation of required programmatic design features described in ,Appendix A, Section A.2.2, and through the application of any additional mitigation. Section 9.4.13.3, below, identifies SEZ-specific design features of particular relevance to the Riverside East SEZ.

- 39
- 40 41

42

9.4.13.2.1 Construction

The Riverside East SEZ has a relatively flat terrain; thus only a minimum number of site
preparation activities, perhaps with no large-scale earthmoving operations, would be required.
However, fugitive dust emissions from soil disturbances during the entire construction phase
would be a major concern because of the large areas that would be disturbed in a region that

experiences windblown dust problems. Fugitive dusts, which are released near ground level,
 typically have more localized impacts than similar emissions from an elevated stack, which has
 additional plume rise induced by buoyancy and momentum effects.

4 5 6

7

16

17

18 19

20 21

22 23

24 25

26 27 28

29

30 31 32

Methods and Assumptions

Air quality modeling for PM₁₀ and PM_{2.5} emissions associated with construction activities was performed by using the EPA-recommended AERMOD model (EPA 2009b). Details for emissions estimation, the description of AERMOD, input data processing procedures, and modeling assumption are described in Appendix M, Section M.13. Estimated air concentrations were compared with the applicable NAAQS/CAAQS levels at the site boundaries and nearby communities and with PSD increment levels at nearby Class I areas.¹¹ For the Riverside East SEZ, the modeling was conducted based on the following assumptions and input:

- Uniformly distributed emissions over the 3,000 acres (12.1 km²) each and 9,000 acres (36.4 km²) in total, and in the west-central portion of the SEZ, adjacent to the nearest Class I area (Joshua Tree NP) and north of many scattered residences, including Lake Tamarisk and Desert Center;
 - Surface hourly meteorological data from the Blythe Airport and upper air sounding data from Desert Rock/Mercury, Nevada, for the 2005 to 2009 period;
 - A regularly spaced receptor grid over a modeling domain of 62×62 mi (100 km \times 100 km) centered on the proposed SEZ; and
 - Additional discrete receptors at the SEZ boundaries and at the nearest Class I area—Joshua Tree NP—adjacent to the northwestern portion of the SEZ.

Results

The modeling results for both PM₁₀ and PM_{2.5} concentration increments and total
concentrations (modeled plus background concentrations) that would result from constructionrelated fugitive emissions are summarized in Table 9.4.13.2-1. Maximum 24-hour PM₁₀
concentration increments modeled to occur at the site boundaries would be an estimated
627 µg/m³, which far exceeds the relevant NAAQS level of 150 µg/m³ or the CAAQS level of
50 µg/m³. Total 24-hour PM₁₀ concentrations of 784 µg/m³ would also exceed the NAAQS and

⁴⁰ CAAQS levels at the SEZ boundary. However, high PM_{10} concentrations would be limited to

¹¹ To provide a quantitative assessment, the modeled air impacts of construction were compared to the NAAQS/CAAQS levels and the PSD Class I increment levels. Although the Clean Air Act exempts construction activities from PSD requirements, a comparison with the Class I increment levels was used to quantify potential impacts. Only monitored data can be used to determine the attainment status. Modeled data are used to assess potential problems and as a consideration in the permitting process.

TABLE 9.4.13.2-1 Maximum Air Quality Impacts from Emissions Associated with Construction Activities for the Proposed Riverside East SEZ

			Concentration ($\mu g/m^3$)			Percentage of NAAQS/CAAQS ^e		
Pollutant ^a	Averaging Time	Rank ^b	Maximum Increment ^b	Background ^c	Total	NAAQS/ CAAQS ^d	Increment	Total
PM ₁₀	24-hour	H6H	627	157	784	150/50	418/1,255	523/1,569
	Annual	NA ^f	94.1	56.0	150	NA/20	NA/471	NA/751
PM _{2.5}	24-hour	H8H	44.2	26.8	71.0	35/NA	126/NA	203/NA
	Annual	NA	9.4	10.8	20.2	15.0/12	63/78	135/168

^a $PM_{2.5}$ = particulate matter with a diameter of $\leq 2.5 \mu m$; PM_{10} = particulate matter with a diameter of $\leq 10 \mu m$.

^b Concentrations for attainment demonstration are presented. H6H = highest of the sixth-highest concentrations at each receptor over the 5-year period. H8H = highest of the multiyear average of the eighth-highest concentrations at each receptor over the five-year period. For the annual average, multiyear averages of annual means over the five-year period are presented. Maximum concentrations are predicted to occur at the site boundaries.

- ^c See Table 9.4.13.1-2.
- ^d First and second values are NAAQS and CAAQS, respectively.
- ^e First and second values are concentration levels as a percentage of NAAQS and CAAQS, respectively.
- f NA = not applicable.
- 1 2

3 the immediate area surrounding the SEZ boundary and would decrease quickly with distance. 4 Predicted maximum 24-hour PM₁₀ concentration increments would be about 90 to 150 μ g/m³ at 5 the nearest residences, scattered over the north of Lake Tamarisk; about 80 μ g/m³ at Lake Tamarisk; 40 µg/m³ at Desert Center; 20 µg/m³ at Eagle Mountain Pumping Station; and 6 7 $10 \,\mu\text{g/m}^3$ or less at residences around the eastern SEZ near Blythe. Concentration contours 8 indicate that higher concentrations are limited to the boundary of Joshua Tree NP and from 9 around the foot of higher elevations. Concentrations at higher elevations are relatively low (a 10 maximum of about 20 μ g/m³). Annual average modeled PM₁₀ concentration increments and 11 total concentrations (increment plus background) at the SEZ boundary would be about 94.1 μ g/m³ and 150 μ g/m³, respectively, which are much higher than the CAAQS level of 12 $20 \,\mu g/m^3$. Annual PM₁₀ increments would be much lower for the mentioned residences, about 13 14 2 to 10 μ g/m³ at the nearest residences, scattered over the north of Lake Tamarisk; about $2 \mu g/m^3$ at Lake Tamarisk; and about $1 \mu g/m^3$ at Desert Center and Eagle Mountain Pumping 15 Station. Total 24-hour PM_{2.5} concentrations would be 71 μ g/m³ at the SEZ boundary, which is 16 much higher than the NAAQS level of 35 μ g/m³; the modeled increment contributes about twice 17 18 as much as background concentrations to this total. The total annual average PM_{2.5} concentration would be 20.2 μ g/m³, which is above the NAAQS and CAAQS levels of 15.0 and 12 μ g/m³, 19 respectively. At the nearby residences, predicted maximum 24-hour and annual PM_{2.5} 20 concentration increments would be about 7.6 and 0.7 μ g/m³, respectively. 21

- Predicted 24-hour and annual PM₁₀ concentration increments at the nearest Class I Area,
 Joshua Tree NP, would be about 417 and 29.8 µg/m³, or 5,200% and 746% of the PSD
 increments for Class I Areas, respectively.
- 5 In conclusion, predicted 24-hour and annual PM10 and PM2.5 concentration levels could 6 exceed NAAOS and CAAOS levels at the SEZ boundaries and in immediate surrounding areas 7 during the construction of solar facilities. To reduce potential impacts on ambient air quality and 8 to comply with BLM design features, aggressive dust control measures would be used. Potential 9 air quality impacts on nearby residences and cities would be lower. Modeling indicates that 10 construction activities could result in concentrations far above Class I PSD PM₁₀ increments at 11 the nearest federal Class I area (Joshua Tree NP). Construction activities are not subject to the 12 PSD program and the comparison provides only a screen for gauging the size of the impact. 13 Additionally, the assumed scenario-in which three construction projects would occur 14 simultaneously near the western central portion of the SEZ-is quite conservative. If locations of construction were spread across the SEZ or the projects occurred at different times, potential 15 16 impacts would be anticipated to be much lower than the aforementioned values. Accordingly, impacts of construction activities on ambient air quality would be expected to be moderate and 17 18 temporary.
- 19

20 Construction emissions from the engine exhaust from heavy equipment and vehicles 21 could cause impacts on AQRVs (e.g., visibility and acid deposition) at the adjacent federal 22 Class I area, Joshua Tree NP, which is located downwind of prevailing winds, if construction 23 were to occur in the western portion of the SEZ. SO_x emissions from engine exhaust would be 24 very low, because BLM design features would require that ultra-low-sulfur fuel with a sulfur 25 content of 15 ppm be used. NO_x emissions from engine exhaust would be primary contributors to potential impacts on AQRVs. Construction-related emissions are temporary in nature and thus 26 27 would cause some unavoidable but short-term impacts.

28

29 For this analysis, the impacts of construction and operation of transmission lines outside 30 of the SEZ were not assessed, assuming that one or more of the existing transmission lines 31 (ranging from 69 kV to 500 kV) located within the SEZ might be used to connect some new 32 solar facilities to load centers, and that additional project-specific analysis would be done for 33 new transmission construction or line upgrades. However, some construction of transmission 34 lines could occur within the SEZ. Potential impacts on ambient air quality would be a minor 35 component of construction impacts in comparison with solar facility construction and would be 36 temporary in nature.

37 38

39

40

9.4.13.2.2 Operations

Emission sources associated with the operation of a solar facility would include auxiliary boilers; vehicle (commuter, visitor, support, and delivery) traffic; maintenance (e.g., mirror cleaning and repair and replacement of damaged mirrors); and drift from cooling towers for the parabolic trough or power tower technologies if wet cooling was implemented (drift consists of low-level PM emissions). 1 The type of emission sources caused by and offset by operation of a solar facility are 2 discussed in Appendix M, Section M.13.4.

- 3 4 Estimates of potential air emissions displaced by the solar project development at the 5 Riverside East SEZ are presented in Table 9.4.13.2-2. Total power generation capacity ranging 6 from 18,035 to 32,463 MW is estimated for the Riverside East SEZ for various solar 7 technologies (see Section 9.4.2). The estimated amount of emissions avoided for the solar 8 technologies evaluated depends only on the megawatts of conventional fossil fuel-generated 9 power displaced, because a composite emission factor per megawatt-hour of power by 10 conventional technologies is assumed (EPA 2009c). If the Riverside East SEZ were fully developed, emissions avoided would be expected to be substantial. Development of solar power 11 12 in the SEZ would result in avoided air emissions ranging from 30% to 54% of total emissions of 13 SO₂, NO_x, Hg, and CO₂ from electric power systems in the state of California (EPA 2009c). 14
- 15

TABLE 9.4.13.2-2Annual Emissions from Combustion-Related Power Generation Displacedby Full Solar Development of the Proposed Riverside East SEZ

		Power	Emissions Displaced (tons/yr; 10 ³ tons/yr for CO ₂) ^c					
Area Size (acres)	Capacity (MW) ^a	Generation (GWh/yr) ^b	SO ₂	NO _x	Hg	CO ₂		
202,896	18,035–32,463	31,598–56,876	4,040–7,272 (23,867–42,961)	6,636–11,944 (35,174–63,313)	0.06–0.11 (0.28–0.50)	15,699–28,258 (24,932–44,878)		
Percentage of total emissions from electric power systems in California ^d			30–54%	30–54%	30–54%	30–54%		
Percentage of total emissions from all source categories in California ^e			5.7-10%	0.55-1.0%	NA ^f	3.6-6.6%		
Percentage power syste	of total emissions ms in the six-state	from electric study area ^d	1.6–2.9% (9.5–17%)	1.8–3.2% (9.5–17%)	2.0–3.6 (9.5–17%)	6.0–11% (9.5–17%)		
Percentage categories in	of total emissions n the six-state stud	from all source y area ^e	0.86–1.5% (5.1–9.1%)	0.25-0.44% (1.3-2.3%)	NA (NA)	1.9–3.4% (3.0–5.4%)		

^a It is assumed that the SEZ would eventually have development on 80% of the lands and that a range of 5 acres (0.020 km²) per MW (for parabolic trough technology) to 9 acres (0.036 km²) per MW (power tower, dish engine, and PV technologies) would be required.

- ^b Assumed a capacity factor of 20%.
- ^c Composite combustion-related emission factors for SO₂, NO_x, Hg, and CO₂ of 0.26, 0.42, 3.7×10^{-6} , and 994 lb/MWh, respectively, were used for the state of California. Values in parentheses are estimated based on composite combustion-related emission factors for SO₂, NO_x, Hg, and CO₂ of 1.51, 2.23, 1.8×10^{-5} , and 1,578 lb/MWh, respectively, averaged over six southwestern states.
- ^d Emission data for all air pollutants are for 2005.
- ^e Emission data for SO_2 and NO_x are for 2002, while those for CO_2 are for 2005.
- f NA = not estimated.

Sources: EPA (2009a,c); WRAP (2009).

1 Avoided emissions would be up to 11% of total emissions from electric power systems in the

2 six-state study area. When compared with all source categories, power production from the same

3 solar facilities would displace up to 10% of SO₂, 1.0% of NO_x, and 6.6% of CO₂ emissions in

4 the state of California (EPA 2009a; WRAP 2009). These emissions would be up to 3.4% of total

6 emissions from all source categories in the six-state study area. Power generation from fossil
 6 fuel-fired power plants accounts for only 53% of the total electric power generation in

7 California, most of which is from natural gas combustion. Thus, solar facilities to be built in the

8 Riverside East SEZ could considerably reduce fuel combustion-related emissions in California

9 but relatively less so than those built in other states with higher fossil use rates.

10

11 About one-quarter of electricity consumed in California is generated out of state, with 12 about three-quarters of this amount coming from the southwestern states. Thus, it is possible that 13 a solar facility in California would replace power from fossil fuel-fired power plants outside of 14 California but within the six-state study area. It is also possible that electric power transfer 15 between the states will increase in the future. To assess potential region-wide emissions benefit, 16 emissions being displaced were also estimated based on composite emission factors averaged 17 over the six-state study area. For SO₂, NO_x, and Hg, composite emission factors for the six-state 18 study area would be about 5 to 6 times higher than those for California alone. For CO₂, the 19 six-state emission factor is about 60% higher than the California-only emission factor. If 20 the Riverside East SEZ were fully developed, emissions avoided would be considerable. 21 Development of solar power in the SEZ would result in avoided air emissions ranging from 22 9.5% to 17% of total emissions of SO₂, NO_x, Hg, and CO₂ from electric power systems in the 23 six southwestern states. These emissions would be up to 9.1% of total emissions from all source 24 categories in the six-state study area.

25

26 As discussed in Section 5.11.1.5, the operation of associated transmission lines would 27 generate some air pollutants from activities such as periodic site inspections and maintenance. 28 However, these activities would occur infrequently, and the amount of emissions would be 29 small. In addition, transmission lines could produce minute amounts of O₃ and its precursor 30 NO_x associated with corona discharge (i.e., the breakdown of air near high-voltage conductors), which is most noticeable for higher-voltage lines during rain or very humid conditions. Since 31 32 the Riverside East SEZ is located in an arid desert environment, these emissions would be small, 33 and potential impacts on ambient air quality would be negligible, considering the infrequent 34 occurrences and small amount of emissions from corona discharges.

- 35
- 36
- 37 38

9.4.13.2.3 Decommissioning/Reclamation

As discussed in Section 5.11.1.4, decommissioning/reclamation activities are similar to
construction activities but on a more limited scale and of shorter duration. Potential impacts on
ambient air quality would be correspondingly less than those from construction activities.
Decommissioning activities would last for a short period, and their potential impacts would be
moderate and temporary. The same mitigation measures adopted during the construction phase
would be implemented during the decommissioning phase (Section 5.11.3).

46

9.4.13.3 SEZ-Specific Mitigation Measures and Mitigation Effectiveness

No SEZ-specific design features are required. Limiting dust generation during construction and operations at the proposed Riverside East SEZ (such as increased watering frequency or road paving or treatment) is a required design feature under BLM's proposed Solar Energy Program. These extensive fugitive dust control measures would keep off-site PM levels as low as possible during construction.

9

10

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	<i>This page intentionally left blank.</i>
14	
15	

9.4.14 Visual Resources

9.4.14.1 Affected Environment

6 The proposed Riverside East SEZ is located in the Chuckwalla Valley and the southern 7 portion of the Palen Valley approximately 6.7 mi (10.9 km) west of the California-Arizona 8 border within the CDCA in Riverside County in southern California. The SEZ lies within the 9 Mojave basin and range physiographic province, typified by small, rocky mountain ranges with 10 jagged peaks alternating with talus slopes and desert floor. Flat basins form broad flat expanses of barren plains, generally with low scrub vegetation and expansive views. Dark browns and 11 12 garnets are the dominant mountain hues, although blues and purples prevail as viewing distance 13 increases. In contrast, lighter brown and tan soils dominate the desert floor, sparsely dotted 14 with the grey-green of Sonoran creosotebush and golden bursage scrub vegetation (BLM and 15 CEC 2010a).

16

1

2 3 4

5

17 The SEZ includes portions of both the Sonoran Basin and Range ecoregion and the 18 western portion of the Mojave Basin and Range ecoregion (EPA 2007) and is located within two 19 of the USFS's ecological subsections: Chuckwalla Valley and Palo Verde Valley and Mesa. Both 20 are characterized by very gently to moderately sloping alluvial fans, with nearly level basin 21 floors (USFS 1997).

22

23 Within the Chuckwalla Valley, elevations range from 350 ft (106.7 m) at Ford Dry Lake 24 to about 800 ft (243.8 m). The small surrounding mountain ranges rise 3,000 to 5,000 ft (914.4 to 25 1,524 m) above mean sea level. Visually prominent mountain ranges around the valley include the Big Maria Mountains to the east; the Little Maria, Palen, and McCoy ranges to the north; the 26 Coxcomb Mountains within Joshua Tree NP to the northwest; the Eagle Mountains to the west, 27 28 the majority of which are within Joshua Tree NP; the Chuckwalla and Little Chuckwalla 29 Mountains to the south; and the Mule and Palo Verde Mountains to the southeast. The SEZ and 30 surrounding mountain ranges are shown in Figure 9.4.14.1-1.

31

32 The Riverside East SEZ (202,896 acres [821 km²]) occupies an area approximately 46 mi 33 (74 km) east to west (at greatest extent) and 27 mi (43 km) north to south (at greatest extent), and 34 is located approximately 8.4 mi (13.5 km) (at closest approach) west of the town of Blythe and 35 47 mi (76 km) east of the community of Indio. The community of Desert Center is located 36 adjacent to the southwest corner of the SEZ. I-10 runs through the eastern portion of the SEZ and 37 then along most of its southern border. There are a number of exits to local roads off I-10 as it 38 passes by and through the SEZ. State Route 177 passes through the west side of the SEZ in a 39 northeasterly direction, and the Midland-Rice Road and a railroad pass through the eastern 40 portion of the SEZ in a northwesterly direction.

41

The SEZ is located within the flat plains of the Chuckwalla and Palen Valley floors, and the strong horizon line and the above-mentioned mountain ranges surrounding the valley are the dominant visual features. Elevation within the SEZ ranges from a low of 250 ft (76 m) on the southeastern border of the SEZ near Blythe to a high of 1,690 ft (516 m) on the northeastern border of the SEZ in the Big Maria Mountains; however, the valley floor ranges from

FIGURE 9.4.14.1-1 Proposed Riverside East SEZ and Surrounding Lands
approximately 360 to 750 ft (110 to 230 m). The western portion generally slopes gently
southward to a low point at Ford Dry Lake, while the eastern portion of the SEZ slopes
southeastward toward the Colorado River. The flatness of the valley and general absence of
screening vegetation afford panoramic views of the vast valley floor and the surrounding
mountain ranges that form a visual backdrop.

The Chuckwalla Valley is located within the ecotone between the Mojave and Sonoran
Deserts; thus the SEZ, although very flat, is vegetatively diverse. While much of the area is
dominated by creosote shrublands or areas with very little vegetation, the eastern portion of the
SEZ, especially along McCoy Wash and its tributaries, contains a well-developed ironwood/palo
verde community.

- Much of the SEZ consists of flats with widely spaced, olive green creosote bushes and other low shrubs of various green and brown hues, but there are also dry lake beds, sandy areas, and dry washes with ironwood and other trees. The diverse landscape types result in somewhat varied colors and textures, although foreground textures are generally coarse. Soils are generally very light tan and visually prominent over most of SEZ due to the sparse vegetation. Other portions of the SEZ contain generally light gray gravel flats. Some areas are devoid or nearly devoid of vegetation.
- 2021No permanent water features at
- 22 23

No permanent water features are present on the SEZ. This landscape type is common within the region.

24 Although the SEZ itself is generally natural appearing, cultural modifications within the 25 SEZ detract somewhat from the SEZ's scenic quality. In addition to I-10, State Route 177, and Midland Road, several gravel and dirt roads of various sizes cross the SEZ. Transmission lines 26 27 also cross the SEZ. An apparently abandoned railroad runs through the eastern portion of the 28 SEZ. The Midland Long Term Visitor Area is also located on the east side of the SEZ. An 29 existing 500-kV transmission line runs east-west along I-10 and parallel to the southern SEZ 30 boundary. In addition, a 230-kV line passes through the far western section of the SEZ, and a 31 69-kV line passes through the eastern portion of the SEZ, along with other transmission lines 32 (see Section 9.4.2). 33

- Off-site views are dominated by the surrounding mountain ranges, which, in some cases, for example, the Coxcomb, McCoy, Big Maria, Little Maria, and Mule Mountains, rise from the valley floor immediately adjacent to the SEZ. Other ranges, such as the Eagle, Chuckwalla, Little Chuckwalla, and Palen Mountains, are separated from the SEZs by one to several miles of bajadas or valley floor. The mountain slopes and peaks around the SEZ are, in general, visually pristine, as they are largely within congressionally designated WAs.
- 40

The general lack of topographic relief, water, and variety results in low scenic quality on the valley floor; however, because of the flatness of the landscape, the lack of trees, and the breadth of the Chuckwalla Valley, the SEZ presents a vast panoramic landscape with sweeping views of the surrounding mountains that add significantly to the scenic quality of the SEZ. In general, the mountains appear to be devoid of vegetation, and their generally jagged, irregular form and brown/garnet colors provide dramatic visual contrasts to the strong horizontal line, green vegetation, and light-colored soils of the valley floor, particularly when viewed from
 nearby locations within the SEZ. Panoramic views of the SEZ are shown in Figures 9.4.14.1-2,
 9.4.14.1-3, and 9.4.14.1-4.

4

12

5 Off-site cultural modifications near the SEZ detract somewhat from the SEZ's scenic 6 quality. The abandoned Eagle Mountain Mine is prominently visible in the Eagle Mountains 7 from the far northwest portion of the SEZ. Near the western boundary of the SEZ are several 8 small, private lots and homes, including a housing development at Lake Tamarisk, immediately 9 adjacent to the farthest southwest portion of the SEZ. Ironwood State Prison is visible from 10 nearby locations within the far southeastern portion of the SEZ. Traffic on I-10 adjacent to or 11 near the SEZ is visible from the southern portions of the SEZ.

While the lands to the north and west of the SEZ are generally undeveloped mountains, the lands to the southeast are agricultural, and there is development visible along I-10 just south of the SEZ, though areas south of the SEZ beyond I-10 are generally undeveloped. Aside from agriculture and development in the I-10 corridor, off-site views from the SEZ include isolated ranches, homes, and associated structures located on private lands near the SEZ, as well as local roads and airstrips. Scattered tanks and other structures associated with ranching and farming are also visible.

While these cultural modifications within and around the SEZ generally detract from the scenic quality of the SEZ, the SEZ is so large that from many locations within it, these features are either not visible or so distant as to have minimal effect on views. In addition, most of the cultural disturbances are found in or near the southern and far western portions of the SEZ. From most locations within the SEZ, particularly in the northern and eastern portions of the SEZ, the landscape is generally natural in appearance, with little disturbance apparent.

28 The BLM conducted a Visual Resource Inventory (VRI) for the SEZ and surrounding 29 lands in 2010 (BLM 2010e). The VRI evaluates BLM-administered lands based on scenic 30 *quality*; sensitivity level, in terms of public concern for preservation of scenic values in the 31 evaluated lands; and distance from travel routes or key observation points. Based on these three 32 factors, BLM-administered lands are placed into one of four Visual Resource Inventory Classes, 33 which represent the relative value of the visual resources. Class I and II are the most valued; 34 Class III represents a moderate value; and Class IV represents the least value. Class I is reserved 35 for specially designated areas, such as national wildernesses and other congressionally and 36 administratively designated areas where decisions have been made to preserve a natural 37 landscape. Class II is the highest rating for lands without special designation. More information 38 about VRI methodology is available in Section 5.7 and in Visual Resource Inventory, BLM 39 Manual Handbook 8410-1 (BLM 1986a).

40

The VRI map for the SEZ and surrounding lands is shown in Figure 9.4.14.1-5. The VRI classes for the SEZ are VRI Class II, indicating high relative visual values; Class III, indicating moderate relative visual values; and Class IV, indicating low relative visual values. Within the SEZ, VRI Class II areas include lands within 5 mi (8 km) of Joshua Tree NP in the northwestern portion of the SEZ, and lands in the southeastern portion of the SEZ between the Palen Mountains and the Little Chuckwalla Mountains. The inventory indicates moderate scenic

FIGURE 9.4.14.1-2 Approximately 120° Panoramic View of Western Portion of the Proposed Riverside East SEZ from Desert Center Facing Northeast, Including Lake Tamarisk (foreground) and Coxcomb Mountains in Joshua Tree NP (background center)

FIGURE 9.4.14.1-3 Approximately 180° Panoramic View of the Proposed Riverside East SEZ from I-10 near Ford Dry Lake Facing North, Including Chuckwalla Mountains (far left), Palen Mountains (background center), and McCoy Mountains (right)

FIGURE 9.4.14.1-4 Approximately 120° Panoramic View of the Northeastern Portion of the Proposed Riverside East SEZ from McCoy Wash Facing Northeast, Including Big Maria Mountains

FIGURE 9.4.14.1-5 Visual Resource Inventory Values for the Proposed Riverside East SEZ and Surrounding Lands

1 quality for the Chuckwalla Valley. The scenic quality rating includes a high score for attractive 2 off-site views and low scores for landform variety and the presence of water. The inventory 3 indicates high sensitivity for the SEZ lands near Joshua Tree NP, noting a high level of public 4 concern for the heavily visited NP. The inventory indicates high sensitivity for the Class II area 5 in the southeastern portion of the SEZ, based on heavy recreational use, the presence of a BLM 6 Backcountry Byway (the Bradshaw Trail) and historic trails, and close proximity to 7 congressionally designated wilderness and ACECs. Both areas were designated as foreground-8 middleground distance zones, based on proximity to major or secondary travel routes. 9 10 VRI Class III lands include the central portion of the Chuckwalla Valley within the westcentral, southern, and northeastern parts of the SEZ. These lands received lower sensitivity 11 12 ratings than the Class II areas, primarily because they are farther from Joshua Tree NP and 13 other high-value scenic resource areas. They received moderate scores for sensitivity, in part because of high visibility from I-10, their inclusion in the CDCA, and their proximity to the NP 14 15 and other WAs. VRI Class IV lands include very small areas on the edges of the northeastern 16 part of the SEZ, corresponding to areas where mining damage in the McCoy and Big Maria 17 Mountains is visible. 18 19 In the Barstow, El Centro, Needles, and Palm Springs-South Coast FOs, lands within the 20 25-mi (40-km), 650-ft (198-m) viewshed of the SEZ contain 318,419 acres (1,288.60 km²) of 21 VRI Class I areas in Palen-McCoy WA and other special designation lands; 390,052 acres 22 (1,578.48 km²) of VRI Class II areas, primarily west, southwest, and southeast of the SEZ; 23 429,146 acres (1,736.69 km²) of Class III areas, primarily in the Chuckwalla Valley north and south of the SEZ; and 176,428 acres (713.98 km²) of VRI Class IV areas, concentrated primarily 24 25 in heavily mined mountain ranges and the floors of valleys adjacent to Chuckwalla Valley,

26 including Rice and Ward Valleys.

BLM has not assigned VRM classes to the SEZ and surrounding lands. More information
about the BLM VRM program is available in Section 5.12 and in *Visual Resource Management*,
BLM Manual Handbook 8400 (BLM 1984).

9.4.14.2 Impacts

31 32 33

34

The potential for impacts from utility-scale solar energy facilities on visual resources within the proposed Riverside East SEZ and surrounding lands, as well as the impacts of related projects (e.g., access roads and transmission lines) outside of the SEZ, is presented in this section.

Site-specific impact assessment is needed to systematically and thoroughly assess visual impact levels for a particular project. Without precise information about the location of a project and a relatively complete and accurate description of its major components and their layout, it is not possible to assess precisely the visual impacts associated with the facility. However, if the general nature and location of a facility are known, a more generalized assessment of potential visual impacts can be made by describing the range of expected visual changes and discussing contrasts typically associated with these changes. In addition, a general analysis can be used to 1 identify sensitive resources that may be at risk if a future project is sited in a particular area.

Detailed information about the methodology employed for the visual impact assessment for this
 PEIS, including assumptions and limitations, is presented in Appendix M.

4

5 Potential Glint and Glare Impacts. Similarly, the nature and magnitude of potential glint-6 and glare-related visual impacts for a given solar facility are highly dependent on viewer 7 position, sun angle, the nature of the reflective surface and its orientation relative to the sun and 8 the viewer, atmospheric conditions, and other variables. The determination of potential impacts 9 from glint and glare from solar facilities within a given proposed SEZ would require precise 10 knowledge of these variables and is not possible given the scope of this PEIS. Therefore, the following analysis does not describe or suggest potential contrast levels arising from glint and 11 12 glare for facilities that might be developed within the SEZ; however, it should be assumed that 13 glint and glare are possible visual impacts from *any* utility-scale solar facility, regardless of size, landscape setting, or technology type. The occurrence of glint and glare at solar facilities could 14 potentially cause large though temporary increases in brightness and visibility of the facilities. 15 16 The visual contrast levels projected for sensitive visual resource areas discussed in the following analysis do not account for potential glint and glare effects; however, these effects would be 17 18 incorporated into a future site- and project-specific assessment that would be conducted for 19 specific proposed utility-scale solar energy projects. For more information about potential glint 20 and glare impacts associated with utility-scale solar energy facilities, see Section 5.12 of this 21 PEIS.

- 22
- 23 24

25

9.4.14.2.1 Impacts on the Proposed Riverside East SEZ

26 Some or all of the SEZ could be developed for one or more utility-scale solar energy 27 projects, utilizing one or more of the solar energy technologies described in Appendix F. 28 Because of the industrial nature and large size of utility-scale solar energy facilities, large visual 29 impacts on the SEZ would occur as a result of the construction, operation, and decommissioning 30 of solar energy projects. In addition, large impacts could occur at solar facilities utilizing highly 31 reflective surfaces or major light-emitting facility components (solar dish, parabolic trough, and 32 power tower technologies), with lesser impacts associated with reflective surfaces expected from 33 PV facilities. These impacts would be expected to involve major modification of the existing 34 character of the landscape and would likely dominate the views from nearby locations. 35 Additional, and potentially large impacts would occur as a result of the construction, operation, and decommissioning of related facilities, such as access roads and electric transmission lines 36 37 within the SEZ (however, no new transmission line construction outside of the proposed SEZ 38 was assessed; see Section 9.4.1.2). While the primary visual impacts associated with solar energy 39 development within the SEZ would occur during daylight hours, lighting required for utility-40 scale solar energy facilities would be a potential source of visual impacts at night, both within the SEZ and on surrounding lands. 41

42

Common and technology-specific visual impacts from utility-scale solar energy
 development, as well as impacts associated with electric transmission lines, are discussed in

45 Section 5.12 of this PEIS. Impacts would last throughout construction, operation, and

46 decommissioning, and some impacts could continue after project decommissioning. Visual

1	impacts resulting from solar energy development in the SEZ would be in addition to impacts
2	from solar energy development and other development that may occur on other public or private
3	lands within the SEZ viewshed and are subject to cumulative effects. For discussion of
4	cumulative impacts, see Section 9.4.22.4.13 of the PEIS.
5	
6	The changes described above would be expected to be consistent with BLM VRM
7	objectives for VRM Class IV, as seen from nearby KOPs. The BLM has not assigned VRM
8	classes to the SEZ and surrounding lands. More information about impact determination using
9	the BLM VRM program is available in Section 5.12 and in Visual Resource Contrast Rating,
10	BLM Manual Handbook 8431-1 (BLM 1986b).
11	
12	Implementation of the programmatic design features intended to reduce visual impacts
13	(described in Appendix A, Section A.2.2) would be expected to reduce visual impacts associated
14	with utility-scale solar energy development within the SEZ; however, the degree of effectiveness
15	of these design features could be assessed only at the site- and project-specific level. Given the
16	large scale, reflective surfaces, and strong regular geometry of utility-scale solar energy facilities
17	and the lack of screening vegetation and landforms within the SEZ viewshed, siting the facilities
18	away from sensitive visual resource areas and other sensitive viewing areas would be the primary
19	means of mitigating visual impacts. The effectiveness of other visual impact mitigation measures
20	would generally be limited, but would be important to reduce visual contrasts to the greatest
21	extent possible.
22	
23	
24	9.4.14.2.2 Impacts on Lands Surrounding the Proposed Riverside East SEZ
25	
26	
27	Impacts on Selected Sensitive Visual Resource Areas
28	
29	Because of the large size of utility-scale solar energy facilities and the generally flat,
30	open nature of the proposed SEZ, lands outside the SEZ would be subjected to visual impacts
31	related to construction, operation, and decommissioning of utility-scale solar energy facilities.
32	The affected areas and extent of impacts would depend on a number of visibility factors and
33	viewer distance (for a detailed discussion of visibility and related factors, see Section 5.12).
34	A key component in determining impact levels is the intervisibility between the project and
35	potentially affected lands; if topography, vegetation, or structures screen the project from viewer
36	locations, there is no impact.
37	
38	Preliminary viewshed analyses were conducted to identify which lands surrounding the
39	proposed SEZ could have views of solar facilities in at least some portion of the SEZ
40	(see Appendix M for important information on assumptions and limitations of the methods used)
41	Four viewshed analyses were run, assuming four different heights representative of project
42	elements associated with potential solar energy technologies: 24.6 ft (7.5 m) for PV and
43	parabolic trough arrays; 38 ft (11.6 m) for solar dishes and power blocks for CSP technologies;
44	150 ft (45.7 m) for transmission towers and short solar power towers; and 650 ft (198.1 m) for
45	tall solar power towers. Viewshed maps for the SEZ for all four solar technology heights are
46	available in Appendix N.

1 Because of the large size of the SEZ, the area's topography, and the general lack of 2 screening vegetation, the viewshed of the SEZ is enormous. Within 25 mi (41 km) of the SEZ, 3 650-ft (198-m) power towers within the SEZ could theoretically be visible within an area of 4 more than 2,100,000 acres (8,500 km²), which is more than twice the land area of the state of 5 Rhode Island. The viewshed includes large portions of the mountain ranges surrounding the 6 Chuckwalla Valley and some neighboring valleys, including Ward and Rice Valleys, and the 7 Pinto Basin. Because the lands surrounding the SEZ contain a number of sensitive visual 8 resource areas, these areas could be subject to visual impacts associated with solar energy 9 development within the SEZ.

10

11 Figure 9.4.14.2-1 shows the combined results of the viewshed analyses for all four solar 12 technologies. The colored portions indicate areas with clear lines of sight to one or more areas 13 within the SEZ and from which solar facilities within these areas of the SEZ would be expected 14 to be visible, assuming the absence of screening vegetation or structures and adequate lighting and other atmospheric conditions. The light brown areas are locations from which PV and 15 16 parabolic trough arrays located in the SEZ could be visible. Solar dishes and power blocks for CSP technologies would be visible from the areas shaded in light brown and the additional 17 18 areas shaded in light purple. Transmission towers and short solar power towers would be visible 19 from the areas shaded light brown, light purple, and the additional areas shaded in dark purple. 20 Power tower facilities located in the SEZ could be visible from areas shaded light brown, light 21 purple, dark purple, and at least the upper portions of power tower receivers could be visible 22 from the additional areas shaded in medium brown.

23

For the following visual impact discussion, the tall solar power tower (650 ft [198.1 m]) and PV and parabolic trough array (24.6 ft [7.5 m]) viewsheds are shown in figures and discussed in the text. These heights represent the maximum and minimum landscape visibility for solar energy technologies analyzed in this PEIS. Viewsheds for solar dish and CSP technology power blocks (38 ft [11.6 m]) and for transmission towers and short solar power towers (150 ft [45.7 m]) are presented in Appendix N. The visibility of these facilities would fall between that for tall power towers and PV and parabolic trough arrays.

31 32

33

Impacts on Selected Federal-, State-, and BLM-Designated Sensitive Visual Resource Areas

34 35

36 Figure 9.4.14.2-2 shows the results of a GIS analysis that overlays selected federal-, 37 state-, and BLM-designated sensitive visual resource areas onto the combined tall solar power 38 tower (650 ft [198.1 m]) and PV and parabolic trough array (24.6 ft [7.5 m]) viewsheds, in order 39 to illustrate which of these sensitive visual resource areas could have views of solar facilities 40 within the SEZ and therefore potentially would be subject to visual impacts from those facilities. Distance zones that correspond with BLM's VRM system-specified foreground-middleground 41 42 distance (5 mi [8 km]), background distance (15 mi [24.1 km]), and a 25-mi (40.2-km) distance 43 zone are shown as well, in order to indicate the effect of distance from the SEZ on impact levels, 44 which are highly dependent on distance.

FIGURE 9.4.14.2-1 Viewshed Analyses for the Proposed Riverside East SEZ and Surrounding Lands, Assuming Solar Technology Heights of 24.6 ft (7.5 m), 38 ft (11.6 m), 150 ft (45.7 m), and 650 ft (198.1 m) (shaded areas indicate lands from which solar development within the SEZ could be visible)

FIGURE 9.4.14.2-2 Overlay of Selected Sensitive Visual Resource Areas onto Combined 650-ft (198.1-m) and 24.6-ft (7.5-m) Viewsheds for the Proposed Riverside East SEZ

1	Th	e scenic resources included in the analysis were as follows:
2		
3 1	•	National Parks, National Monuments, National Recreation Areas, National
4		Conservation Areas National Historic Sites:
6		Conservation Areas, National Instoric Sites,
7	•	Congressionally authorized Wilderness Areas:
8		congressionany automicea (finaemess inteas,
9	•	Wilderness Study Areas;
10		
11	•	National Wild and Scenic Rivers;
12		
13	•	Congressionally authorized Wild and Scenic Study Rivers;
14		
15	•	National Scenic Trails and National Historic Trails;
10 17	•	National Historic Landmarks and National Natural Landmarks:
17	·	National Instone Landmarks and National Natural Landmarks,
19	•	All-American Roads National Scenic Byways State Scenic highways and
20		BLM- and USFS-designated scenic highways/byways: BLM-designated
21		Special Recreation Management Areas; and
22		
23	•	ACECs designated because of outstanding scenic qualities.
24		
25	Ро	tential impacts on specific sensitive resource areas visible from and within 25 mi
26	(40 km) or	f the proposed Riverside East SEZ are discussed below. The results of this analysis are
27	also sumn	narized in Table 9.4.14.2-1. Further discussion of impacts on these areas is available in
20 20	9/17	14.5 (Specially Designated Aleas and Lands with winderness Characteristics) and ultural Resources) of this PEIS
30). 4 .17 (Cl	atural Resources) of this I LIS.
31	Th	e following visual impact analysis describes <i>visual contrast levels</i> rather than <i>visual</i>
32	impact lev	vels. Visual contrasts are changes in the landscape as seen by viewers, including
33	changes ir	n the forms, lines, colors, and textures of objects seen in the landscape. A measure of
34	visual imp	<i>pact</i> includes potential human reactions to the visual contrasts arising from a
35	developm	ent activity, based on viewer characteristics, including attitudes and values,
36	expectatio	ons, and other characteristics that that are viewer- and situation-specific. Accurate
37	assessmen	nt of visual impacts requires knowledge of the potential types and numbers of viewers
38	for a given	n development and their characteristics and expectations; specific locations where the
39	project mi	ight be viewed from; and other variables that were not available or not feasible to
40	incorporat	te in this PEIS analysis. These variables would be incorporated into a future site- and
41 12	energy pr	piects. For more discussion of visual contrasts and impacts, see Section 5.12 of the
<u></u> +∠ 43	PEIS	sjeets. For more discussion of visual contrasts and impacts, see section 5.12 of the
44	1 110.	
45		
-		

TABLE 9.4.14.2-1Selected Potentially Affected Sensitive Visual Resources within a 25-mi(40.2-km) Viewshed of the Proposed Riverside East SEZ, Assuming a Viewshed Analysis TargetHeight of 650 ft (198.1 m)

	-	Featur	e Area or Linear Dis	tance ^a
			Visible	between
Feature Type	Feature Name (Total Acreage)	Visible within 5 mi	5 and 15 mi	15 and 25 mi
National Conservation Area	California Desert (25,919,319 acres)	763,254 acres (3%) ^b	479,968 acres (2%)	251,330 acres (1%)
NPs	Joshua Tree (793,331 acres)	53,426 acres (7%)	57,990 acres (7%)	6,175 acres (0.8%)
Scenic Highway	Bradshaw Trail	9 mi (15 km)	14 mi (23 km)	0 acres
WAs	Big Maria Mountains (46,056 acres)	8,873 acres (19%)	0 acres	0 acres
	Chuckwalla Mountains (88,202 acres)	31,482 acres (36%)	18,470 acres (21%)	0 acres
	Imperial Refuge (15,714 acres)	0 acres	0 acres	560 acres (4%)
	Joshua Tree (586,623 acres)	40,421 acres (7%)	55,696 acres (9%)	3,343 acres (0.5%)
	Little Chuckwalla Mountains (28,708 acres)	76 (0.3%)	16,603 acres (58%)	0 acres
	Orocopia Mountains (54,709 acres)	0 acres	143 acres (0.3%)	2,108 acres (4%)
	Palen-McCoy (224,414 acres)	95,559 acres (43%)	75,107 acres (33%)	0 acres
	Palo Verde Mountains (30,403 acres)	0 acres	13,254 acres (44%)	0 acres
	Rice Valley (43,412 acres	7,881 acres (18%)	27,892 acres (64%)	0 acres

TABLE 9.4.14.2-1 (Cont.)

		Featur	e Area or Linear Dis	stance ^a
			Visible	between
	Feature Name	Visible		
Feature Type	(Total Acreage)	within 5 mi	5 and 15 mi	15 and 25 mi
WAs (Cont.)	Sheephole Valley (195,002 acres)	0 acres	357 acres (0.2%)	2,376 acres (1%)
	Trigo Mountains (30,046 acres)	0 acres	0 acres	3,512 acres (12%)
	Turtle Mountains (182,610 acres)	0 acres	0 acres	13,827 acres (8%)
NWRs	Cibola (18,398 acres)	0 acres	7,336 acres (40%)	9,785 acres (53%)
	Imperial (31,465 acres)	0 acres	0 acres	1,749 acres (6%)
National Natural Landmarks	Turtle Mountains (50,057 acres)	0 acres	0 acres	2,355 acres (5%)
ACECs designated for outstanding scenic values	Corn Springs (2,463 acres)	352 acres (14%)	723 acres (29%)	0 acres
	Turtle Mountains (50,057 acres)	0 acres	0 acres	2,355 acres (5%)

^a To convert acres to km^2 , multiply by 0.004047; to convert mi to km, multiply by 1.609.

^b Percentage of total feature area for areal features.

10

 California Desert Conservation Area—The CDCA is a 26-million-acre (105,000-km²) parcel of land in southern California designated by Congress in 1976 through the Federal Land Policy and Management Act. About 10 million acres (40,000 km²) of the CDCA is administered by the BLM. The proposed Riverside East SEZ is located within the CDCA.

 The CDCA management plan notes the "superb variety of scenic values" in the CDCA (BLM 1980), and lists scenic resources as needing management to preserve their value for future generations. The CDCA management plan

GOOGLE EARTH™ VISUALIZATIONS

The visual impact analysis discussion in this section utilizes three-dimensional Google Earth[™] perspective visualizations of hypothetical solar facilities placed within the SEZ. The visualizations include simplified wireframe models of a hypothetical solar power tower facility. The models were placed at various locations within the SEZ as visual aids for assessing the approximate size and viewing angle of utility-scale solar facilities. The visualizations are intended to show the apparent size, distance, and configuration of the SEZ, as well as the apparent size of a typical utility-scale solar power tower project and its relationship to the surrounding landscape, as viewed from potentially sensitive visual resource areas within the viewshed of the SEZ.

The visualizations are not intended to be realistic simulations of the actual appearance of the landscape or of proposed utility-scale solar energy projects. The placement of models within the SEZ did not reflect any actual planned or proposed projects within the SEZ and did not take into account engineering or other constraints that would affect the siting or choice of facilities for this particular SEZ. The number of facility models placed in the SEZ does not reflect the 80% development scenario analyzed in this PEIS, but the discussion of expected visual contrast levels does account for the 80% development scenario. A solar power tower was chosen for the models because the unique height characteristics of power tower facilities make their visual impact potential extend beyond other solar technology types.

divides CDCA lands into multiple-use classes based on management objectives. The class designations govern the type and degree of land use actions allowed within the areas defined by class boundaries. All land use actions and resource-management activities on public lands within a multipleuse class delineation must meet the guidelines given for that class.

The proposed SEZ is within areas classified as multiple use classes "L" and "M." The area of the SEZ around Joshua Tree NP and east of Palen-McCoy WA is designated as Class "L." Class "L" protects sensitive, natural, scenic, ecological, and cultural resource values. Class "L" management provides for generally lower intensity, carefully controlled multiple use of resources, while ensuring that sensitive values are not significantly diminished. Multiple-Use Class "M" (Moderate Use) is based upon a controlled balance between higher intensity use and protection of public lands. This class provides for a wide variety of present and future uses such as mining, livestock grazing, recreation, energy, and utility development. Class "M" management is also designed to conserve desert resources and to mitigate damage to those resources caused by permitted uses.

• Utility-scale solar development within the SEZ would be an allowable use under the CDCA management plan, assuming mitigation measures were used to minimize visual impacts; however, construction and operation of solar facilities under the PEIS development scenario would result in substantial visual impacts on the SEZ and some surrounding lands within the SEZ viewshed that could not be completely mitigated.

28 29 30

1 2 3

4

5

6

7

8 9

10

11

12 13

14

15

16

17 18

19

20

21 22

23

24

25

26

27

• Portions of the CDCA within the 650-ft (198.1-m) viewshed for the Riverside East SEZ include approximately 1,494,552 acres (6,048 km²), or 6% of the

total CDCA acreage. Portions of the CDCA within the 24.6-ft (7.5-m) viewshed encompass approximately 1,048,201 acres (4,242 km²), or 4% of the total CDCA acreage.

National Parks

1

2

3

4 5 6

7 8

9

10

11 12

13

14

15 16

17 18

19

20 21

31

38

• Joshua Tree NP—A portion of the eastern boundary of Joshua Tree NP is adjacent to the SEZ's northwestern boundary, and other portions of the NP are located between 0.2 and 2.5 mi (0.3 to 4 km) of the SEZ. The park contains paved roads popular for scenic driving, several miles of hiking trails, and fourwheel drive roads. There are campgrounds; backcountry camping and hiking are allowed; and the park is a popular winter climbing area. Stargazing is popular year-round, as is bird watching. Most of the park's services and facilities are in the western portion of the park, as is most recreational use; however, the undeveloped wilderness portions of the park, including those areas near the SEZ, are visited by persons seeking solitude and wilderness experiences or engaging in other activities appropriate to the relatively undisturbed environment.

As shown in Figure 9.4.14.2-3, the northwest-southeast trending Coxcomb 22 Mountains within the national park project into the northwestern portion of 23 the SEZ. Portions of the SEZ are located both northeast and southwest of the 24 projection, in essence "wrapping around" the Coxcomb Mountains on all sides 25 except the northwest, where the Coxcomb Mountain portion of the national 26 park connects to the main portion of the park. The park is separated from the 27 SEZ by State Route 177 (about 0.05 mi [0.09 km] in width) for about 4 mi (6.4 km), and approximately another 44 mi (71 km) of the park boundary is 28 29 within 5 mi (8 km, the BLM VRM foreground-middleground distance) of the 30 SEZ.

The area of the national park within the 650-ft (198.1-m) viewshed of the SEZ includes 117,591 acres (476 km²), or 15% of the total park acreage. The area within the 24.6-ft (7.5-m) viewshed of the SEZ includes 68,860 acres (279 km²), or 9% of the total park acreage. The 650-ft (198.1-m) SEZ viewshed extends approximately 14.2 mi (22.9 km) into the national park from the northwestern boundary of the SEZ.

Figure 9.4.14.2-4 is a Google Earth visualization of the SEZ as seen from an
unnamed ridge in the northeastern portion of the national park, near the
southeast end of the Coxcomb Mountains. The visualization includes
simplified wireframe models of a hypothetical solar power tower facility. The
models were placed at various locations within the SEZ, as a visual aid for
assessing the approximate size and viewing angle of utility-scale solar

FIGURE 9.4.14.2-3 Photomap of the Proposed Riverside East SEZ (shown in blue tint) and Surrounding Lands in the Vicinity of Joshua Tree NP

FIGURE 9.4.14.2-4 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from Viewpoint in Southeast Coxcomb Mountains within Joshua Tree NP

12 Indices of a 439-11 (199,9-III) power tower with an 80-acte (3,3-KiIP) field of 3 12-ft (3.7-m) heliostats, each representing approximately 100 MW of electric 4 generating capacity. Eleven groups of four models and two groups of two 5 models were placed in the SEZ for this and other visualizations shown in this 6 section of this PEIS. In the visualization, the SEZ area is depicted in orange, 7 the heliostat fields in blue. 8 The viewpoint in the visualization is from a highpoint on the first ridge in 10 the Coxcomb Mountains within the NP west of the SEZ, and approximately 11 0.8 mi (1.3 km) from the SEZ boundary. The viewpoint elevation is 12 approximately 1,600 ft (490 m) above mean sea level, and the viewpoint is 13 elevated roughly 1,100 ft (340 m) above the valley floor at the closest point 14 within the SEZ. 15 The upper slopes and peaks of the Coxcomb Mountains are barren with little 16 opportunity for screening. The visualization suggests that from this elevated 17 viewpoint and very short distance to the SEZ, the SEZ would be too large to 18 be encompassed in one view, and viewers would need to turn their heads to 19 scan across the whole SEZ. The view direction shown in the visualizat
 generating capacity. Eleven groups of four models and two groups of two models were placed in the SEZ for this and other visualizations shown in this section of this PEIS. In the visualization, the SEZ area is depicted in orange, the heliostat fields in blue. The viewpoint in the visualization is from a highpoint on the first ridge in the Coxcomb Mountains within the NP west of the SEZ, and approximately 0.8 mi (1.3 km) from the SEZ boundary. The viewpoint elevation is approximately 1,600 ft (490 m) above mean sea level, and the viewpoint is elevated roughly 1,100 ft (340 m) above the valley floor at the closest point within the SEZ. The upper slopes and peaks of the Coxcomb Mountains are barren with little opportunity for screening. The viewer swould need to turn their heads to be encompassed in one view, and viewers would need to turn their heads to scan across the whole SEZ. The view direction shown in the visualization (south-southeast) is near the middle of an approximately 180-degree horizontal are in which portions of the SEZ and associated solar facilities would be visible from this location before nearby mountains screened the view of the SEZ. Two clusters of four power tower facility models are visible; the closest tower of the model cluster in the immediate foreground is approximately 1.8 mi (2.8 km) from the viewpoint, and the closest tower of the model cluster in the background is approximately 9.0 mi (14.5 km) from the viewpoint. The potential visual contrast expected for this viewpoint would vary depending on potential visual contrast expected for this viewpoint would vary depending on got project locations, technologies, and site designs; however, if facilities were
4generating capacity. Eleven groups of four models and two groups of two5models were placed in the SEZ for this and other visualizations shown in this6section of this PEIS. In the visualization, the SEZ area is depicted in orange,7the heliostat fields in blue.8109The viewpoint in the visualization is from a highpoint on the first ridge in10the Coxcomb Mountains within the NP west of the SEZ, and approximately110.8 mi (1.3 km) from the SEZ boundary. The viewpoint elevation is12approximately 1,600 ft (490 m) above mean sea level, and the viewpoint is13elevated roughly 1,100 ft (340 m) above the valley floor at the closest point14within the SEZ.15The upper slopes and peaks of the Coxcomb Mountains are barren with little16opportunity for screening. The visualization suggests that from this elevated17viewpoint and very short distance to the SEZ, the SEZ would be too large to18be encompassed in one view, and viewers would need to turn their heads to19scan across the whole SEZ. The view direction shown in the visualization20(south-southeast) is near the middle of an approximately 180-degree21horizontal arc in which portions of the SEZ and associated solar facilities22would be visible from this location before nearby mountains screened the23view of the SEZ.24257Two clusters of four power tower facility models are visible; the closest tower26of the model cluster in the immediate foreground is approximately 1.8 mi
5 Inducts were placed in the SEZ for this and other visualizations shown in this 6 section of this PEIS. In the visualization, the SEZ area is depicted in orange, 7 the heliostat fields in blue. 8 9 9 The viewpoint in the visualization is from a highpoint on the first ridge in 10 the Coxcomb Mountains within the NP west of the SEZ, and approximately 11 0.8 mi (1.3 km) from the SEZ boundary. The viewpoint elevation is 12 approximately 1,600 ft (490 m) above mean sea level, and the viewpoint is 13 elevated roughly 1,100 ft (340 m) above the valley floor at the closest point 14 within the SEZ. 15 The upper slopes and peaks of the Coxcomb Mountains are barren with little 16 opportunity for screening. The visualization suggests that from this elevated 17 viewpoint and very short distance to the SEZ, the SEZ would be too large to 18 be encompassed in one view, and viewers would need to turn their heads to 19 scan across the whole SEZ. The view direction shown in the visualization 20 (south-southeast) is near the middle of an approximately 180-degree 21 horizontal arc in which portions of the SEZ and associated solar facilities 22 would be visible from thi
b section of this PEIS. In the visualization, the SEZ area is depicted in oralige, the heliostat fields in blue. 7 the heliostat fields in blue. 8 7 9 The viewpoint in the visualization is from a highpoint on the first ridge in the Coxcomb Mountains within the NP west of the SEZ, and approximately 0.8 mi (1.3 km) from the SEZ boundary. The viewpoint elevation is approximately 1,600 ft (490 m) above mean sea level, and the viewpoint is elevated roughly 1,100 ft (340 m) above the valley floor at the closest point within the SEZ. 15 The upper slopes and peaks of the Coxcomb Mountains are barren with little opportunity for screening. The visualization suggests that from this elevated viewpoint and very short distance to the SEZ, the SEZ would be too large to be encompassed in one view, and viewers would need to turn their heads to scan across the whole SEZ. The view direction shown in the visualization (south–southeast) is near the middle of an approximately 180-degree horizontal arc in which portions of the SEZ and associated solar facilities would be visible from this location before nearby mountains screened the view of the SEZ. 25 Two clusters of four power tower facility models are visible; the closest tower of the model cluster in the immediate foreground is approximately 1.8 mi (2.8 km) from the viewpoint, and the closest tower of the model cluster in the background is approximately 9.0 mi (14.5 km) from the viewpoint. The potential visual contrast expected for this viewpoint would vary depending on project locations, technologies, and site designs; however, if facilities were
7The henostat fields in blue.8991010101112121314151616171818191919101010111213141515161718191919191919191919191910101112131414151516171718191919101011111213141415151617171818191919191110111112131414151516171818191919191910<
oThe viewpoint in the visualization is from a highpoint on the first ridge in10the Coxcomb Mountains within the NP west of the SEZ, and approximately110.8 mi (1.3 km) from the SEZ boundary. The viewpoint elevation is12approximately 1,600 ft (490 m) above mean sea level, and the viewpoint is13elevated roughly 1,100 ft (340 m) above the valley floor at the closest point14within the SEZ.15The upper slopes and peaks of the Coxcomb Mountains are barren with little16opportunity for screening. The visualization suggests that from this elevated17viewpoint and very short distance to the SEZ, the SEZ would be too large to18be encompassed in one view, and viewers would need to turn their heads to19scan across the whole SEZ. The view direction shown in the visualization20(south-southeast) is near the middle of an approximately 180-degree21horizontal arc in which portions of the SEZ and associated solar facilities22would be visible from this location before nearby mountains screened the23view of the SEZ.24Two clusters of four power tower facility models are visible; the closest tower25Two clusters of four power tower facility models are visible; the closest tower26of the model cluster in the immediate foreground is approximately 1.8 mi27(2.8 km) from the viewpoint, and the closest tower of the model cluster in the28background is approximately 9.0 mi (14.5 km) from the viewpoint. The29potential visual contrast expected for this viewpoint would vary depending on
9The viewpoint in the visualization is from a highpoint on the first ridge in10the Coxcomb Mountains within the NP west of the SEZ, and approximately110.8 mi (1.3 km) from the SEZ boundary. The viewpoint elevation is12approximately 1,600 ft (490 m) above mean sea level, and the viewpoint is13elevated roughly 1,100 ft (340 m) above the valley floor at the closest point14within the SEZ.15The upper slopes and peaks of the Coxcomb Mountains are barren with little16opportunity for screening. The visualization suggests that from this elevated17viewpoint and very short distance to the SEZ, the SEZ would be too large to18be encompassed in one view, and viewers would need to turn their heads to19scan across the whole SEZ. The view direction shown in the visualization20(south-southeast) is near the middle of an approximately 180-degree21horizontal arc in which portions of the SEZ and associated solar facilities22would be visible from this location before nearby mountains screened the23view of the SEZ.242525Two clusters of four power tower facility models are visible; the closest tower26of the model cluster in the immediate foreground is approximately 1.8 mi27(2.8 km) from the viewpoint, and the closest tower of the model cluster in the28background is approximately 9.0 mi (14.5 km) from the viewpoint. The29potential visual contrast expected for this viewpoint would vary depending on30project locations, technologies, and site designs; however
10The Coxcomb Mountains within the NP west of the SEZ, and approximately110.8 mi (1.3 km) from the SEZ boundary. The viewpoint elevation is12approximately 1,600 ft (490 m) above mean sea level, and the viewpoint is13elevated roughly 1,100 ft (340 m) above the valley floor at the closest point14within the SEZ.15The upper slopes and peaks of the Coxcomb Mountains are barren with little16opportunity for screening. The visualization suggests that from this elevated17viewpoint and very short distance to the SEZ, the SEZ would be too large to18be encompassed in one view, and viewers would need to turn their heads to19scan across the whole SEZ. The view direction shown in the visualization20(south-southeast) is near the middle of an approximately 180-degree21horizontal arc in which portions of the SEZ and associated solar facilities22would be visible from this location before nearby mountains screened the23view of the SEZ.242525Two clusters of four power tower facility models are visible; the closest tower26of the model cluster in the immediate foreground is approximately 1.8 mi27(2.8 km) from the viewpoint, and the closest tower of the model cluster in the28background is approximately 9.0 mi (14.5 km) from the viewpoint. The29potential visual contrast expected for this viewpoint would vary depending on30project locations, technologies, and site designs; however, if facilities were
110.8 ml (1.5 km) from the SEZ boundary. The viewpoint elevation is12approximately 1,600 ft (490 m) above mean sea level, and the viewpoint is13elevated roughly 1,100 ft (340 m) above the valley floor at the closest point14within the SEZ.15The upper slopes and peaks of the Coxcomb Mountains are barren with little16opportunity for screening. The visualization suggests that from this elevated17viewpoint and very short distance to the SEZ, the SEZ would be too large to18be encompassed in one view, and viewers would need to turn their heads to19scan across the whole SEZ. The view direction shown in the visualization20(south-southeast) is near the middle of an approximately 180-degree21horizontal arc in which portions of the SEZ and associated solar facilities22would be visible from this location before nearby mountains screened the23view of the SEZ.242525Two clusters of four power tower facility models are visible; the closest tower26of the model cluster in the immediate foreground is approximately 1.8 mi27(2.8 km) from the viewpoint, and the closest tower of the model cluster in the28background is approximately 9.0 mi (14.5 km) from the viewpoint. The29potential visual contrast expected for this viewpoint would vary depending on30project locations, technologies, and site designs; however, if facilities were
12approximately 1,000 ft (490 m) above mean sea level, and the viewpoint is13elevated roughly 1,100 ft (340 m) above the valley floor at the closest point14within the SEZ.15The upper slopes and peaks of the Coxcomb Mountains are barren with little16opportunity for screening. The visualization suggests that from this elevated17viewpoint and very short distance to the SEZ, the SEZ would be too large to18be encompassed in one view, and viewers would need to turn their heads to19scan across the whole SEZ. The view direction shown in the visualization20(south-southeast) is near the middle of an approximately 180-degree21horizontal arc in which portions of the SEZ and associated solar facilities22would be visible from this location before nearby mountains screened the23view of the SEZ.242525Two clusters of four power tower facility models are visible; the closest tower26of the model cluster in the immediate foreground is approximately 1.8 mi27(2.8 km) from the viewpoint, and the closest tower of the model cluster in the28background is approximately 9.0 mi (14.5 km) from the viewpoint. The29potential visual contrast expected for this viewpoint would vary depending on30project locations, technologies, and site designs; however, if facilities were
13elevated roughly 1,100 ft (340 m) above the valley floor at the closest point14within the SEZ.15The upper slopes and peaks of the Coxcomb Mountains are barren with little16opportunity for screening. The visualization suggests that from this elevated17viewpoint and very short distance to the SEZ, the SEZ would be too large to18be encompassed in one view, and viewers would need to turn their heads to19scan across the whole SEZ. The view direction shown in the visualization20(south-southeast) is near the middle of an approximately 180-degree21horizontal arc in which portions of the SEZ and associated solar facilities22would be visible from this location before nearby mountains screened the23view of the SEZ.24Two clusters of four power tower facility models are visible; the closest tower25Two clusters of four power tower facility models are visible; the closest tower26of the model cluster in the immediate foreground is approximately 1.8 mi27(2.8 km) from the viewpoint, and the closest tower of the model cluster in the28background is approximately 9.0 mi (14.5 km) from the viewpoint. The29potential visual contrast expected for this viewpoint would vary depending on30project locations, technologies, and site designs; however, if facilities were
14Within the SEZ.15The upper slopes and peaks of the Coxcomb Mountains are barren with little16opportunity for screening. The visualization suggests that from this elevated17viewpoint and very short distance to the SEZ, the SEZ would be too large to18be encompassed in one view, and viewers would need to turn their heads to19scan across the whole SEZ. The view direction shown in the visualization20(south-southeast) is near the middle of an approximately 180-degree21horizontal arc in which portions of the SEZ and associated solar facilities22would be visible from this location before nearby mountains screened the23view of the SEZ.242525Two clusters of four power tower facility models are visible; the closest tower26of the model cluster in the immediate foreground is approximately 1.8 mi27(2.8 km) from the viewpoint, and the closest tower of the model cluster in the28background is approximately 9.0 mi (14.5 km) from the viewpoint. The29potential visual contrast expected for this viewpoint would vary depending on30project locations, technologies, and site designs; however, if facilities were
15The upper slopes and peaks of the Coxcomb Mountains are barren with little16opportunity for screening. The visualization suggests that from this elevated17viewpoint and very short distance to the SEZ, the SEZ would be too large to18be encompassed in one view, and viewers would need to turn their heads to19scan across the whole SEZ. The view direction shown in the visualization20(south-southeast) is near the middle of an approximately 180-degree21horizontal arc in which portions of the SEZ and associated solar facilities22would be visible from this location before nearby mountains screened the23view of the SEZ.242525Two clusters of four power tower facility models are visible; the closest tower26of the model cluster in the immediate foreground is approximately 1.8 mi27(2.8 km) from the viewpoint, and the closest tower of the model cluster in the28background is approximately 9.0 mi (14.5 km) from the viewpoint. The29potential visual contrast expected for this viewpoint would vary depending on30project locations, technologies, and site designs; however, if facilities were
16opportunity for screening. The visualization suggests that from this elevated17viewpoint and very short distance to the SEZ, the SEZ would be too large to18be encompassed in one view, and viewers would need to turn their heads to19scan across the whole SEZ. The view direction shown in the visualization20(south-southeast) is near the middle of an approximately 180-degree21horizontal arc in which portions of the SEZ and associated solar facilities22would be visible from this location before nearby mountains screened the23view of the SEZ.242524Two clusters of four power tower facility models are visible; the closest tower26of the model cluster in the immediate foreground is approximately 1.8 mi27(2.8 km) from the viewpoint, and the closest tower of the model cluster in the28background is approximately 9.0 mi (14.5 km) from the viewpoint. The29potential visual contrast expected for this viewpoint would vary depending on30project locations, technologies, and site designs; however, if facilities were
 viewpoint and very short distance to the SEZ, the SEZ would be too large to be encompassed in one view, and viewers would need to turn their heads to scan across the whole SEZ. The view direction shown in the visualization (south-southeast) is near the middle of an approximately 180-degree horizontal arc in which portions of the SEZ and associated solar facilities would be visible from this location before nearby mountains screened the view of the SEZ. Two clusters of four power tower facility models are visible; the closest tower of the model cluster in the immediate foreground is approximately 1.8 mi (2.8 km) from the viewpoint, and the closest tower of the model cluster in the background is approximately 9.0 mi (14.5 km) from the viewpoint. The potential visual contrast expected for this viewpoint would vary depending on project locations, technologies, and site designs; however, if facilities were
 be encompassed in one view, and viewers would need to turn their heads to scan across the whole SEZ. The view direction shown in the visualization (south-southeast) is near the middle of an approximately 180-degree horizontal arc in which portions of the SEZ and associated solar facilities would be visible from this location before nearby mountains screened the view of the SEZ. Two clusters of four power tower facility models are visible; the closest tower of the model cluster in the immediate foreground is approximately 1.8 mi (2.8 km) from the viewpoint, and the closest tower of the model cluster in the background is approximately 9.0 mi (14.5 km) from the viewpoint. The potential visual contrast expected for this viewpoint would vary depending on project locations, technologies, and site designs; however, if facilities were
 scan across the whole SEZ. The view direction shown in the visualization (south-southeast) is near the middle of an approximately 180-degree horizontal arc in which portions of the SEZ and associated solar facilities would be visible from this location before nearby mountains screened the view of the SEZ. Two clusters of four power tower facility models are visible; the closest tower of the model cluster in the immediate foreground is approximately 1.8 mi (2.8 km) from the viewpoint, and the closest tower of the model cluster in the background is approximately 9.0 mi (14.5 km) from the viewpoint. The potential visual contrast expected for this viewpoint would vary depending on project locations, technologies, and site designs; however, if facilities were
 (south-southeast) is near the middle of an approximately 180-degree horizontal arc in which portions of the SEZ and associated solar facilities would be visible from this location before nearby mountains screened the view of the SEZ. Two clusters of four power tower facility models are visible; the closest tower of the model cluster in the immediate foreground is approximately 1.8 mi (2.8 km) from the viewpoint, and the closest tower of the model cluster in the background is approximately 9.0 mi (14.5 km) from the viewpoint. The potential visual contrast expected for this viewpoint would vary depending on project locations, technologies, and site designs; however, if facilities were
 horizontal arc in which portions of the SEZ and associated solar facilities would be visible from this location before nearby mountains screened the view of the SEZ. Two clusters of four power tower facility models are visible; the closest tower of the model cluster in the immediate foreground is approximately 1.8 mi (2.8 km) from the viewpoint, and the closest tower of the model cluster in the background is approximately 9.0 mi (14.5 km) from the viewpoint. The potential visual contrast expected for this viewpoint would vary depending on project locations, technologies, and site designs; however, if facilities were
 would be visible from this location before nearby mountains screened the view of the SEZ. Two clusters of four power tower facility models are visible; the closest tower of the model cluster in the immediate foreground is approximately 1.8 mi (2.8 km) from the viewpoint, and the closest tower of the model cluster in the background is approximately 9.0 mi (14.5 km) from the viewpoint. The potential visual contrast expected for this viewpoint would vary depending on project locations, technologies, and site designs; however, if facilities were
 view of the SEZ. Two clusters of four power tower facility models are visible; the closest tower of the model cluster in the immediate foreground is approximately 1.8 mi (2.8 km) from the viewpoint, and the closest tower of the model cluster in the background is approximately 9.0 mi (14.5 km) from the viewpoint. The potential visual contrast expected for this viewpoint would vary depending on project locations, technologies, and site designs; however, if facilities were
Two clusters of four power tower facility models are visible; the closest tower of the model cluster in the immediate foreground is approximately 1.8 mi (2.8 km) from the viewpoint, and the closest tower of the model cluster in the background is approximately 9.0 mi (14.5 km) from the viewpoint. The potential visual contrast expected for this viewpoint would vary depending on project locations, technologies, and site designs; however, if facilities were
Two clusters of four power tower facility models are visible; the closest tower of the model cluster in the immediate foreground is approximately 1.8 mi (2.8 km) from the viewpoint, and the closest tower of the model cluster in the background is approximately 9.0 mi (14.5 km) from the viewpoint. The potential visual contrast expected for this viewpoint would vary depending on project locations, technologies, and site designs; however, if facilities were
26of the model cluster in the immediate foreground is approximately 1.8 mi27(2.8 km) from the viewpoint, and the closest tower of the model cluster in the28background is approximately 9.0 mi (14.5 km) from the viewpoint. The29potential visual contrast expected for this viewpoint would vary depending on30project locations, technologies, and site designs; however, if facilities were
 (2.8 km) from the viewpoint, and the closest tower of the model cluster in the background is approximately 9.0 mi (14.5 km) from the viewpoint. The potential visual contrast expected for this viewpoint would vary depending on project locations, technologies, and site designs; however, if facilities were
 background is approximately 9.0 mi (14.5 km) from the viewpoint. The potential visual contrast expected for this viewpoint would vary depending on project locations, technologies, and site designs; however, if facilities were
 potential visual contrast expected for this viewpoint would vary depending on project locations, technologies, and site designs; however, if facilities were
30 project locations, technologies, and site designs; however, if facilities were
31 located at these distances, the following might be observed: The tops of solar
32 collector/reflector arrays in the closest parts of the SEZ would be visible.
33 Details of array components (mirrors, panels, dishes, heliostats, and so on)
34 would likely be visible and could be a source of reflections. At short
distances, the effects of atmospheric haze would be reduced, so that any brigh
36 colors on facilities and shadow contrasts might be easily seen. Worker activity
37 would likely be visible as well.
38
39 Taller ancillary facilities, such as buildings, transmission structures, and
40 cooling towers, and plumes (if present) likely would be visible projecting
41 above the collector/reflector arrays, and their structural details could be
42 evident at least for nearby facilities. The ancillary facilities could create form
43 and line contrasts with the strongly horizontal, regular, and repeating forms

also be likely, but their extent would depend on the materials and surface treatments utilized in the facilities.

If power towers were present within the SEZ, when operating, receivers at distances of a few miles or less would likely appear as brilliant nonpoint (i.e., having visible cylindrical or rectangular surfaces) light sources atop clearly discernable tower structures against the backdrop of the valley floor and could potentially cause discomfort when looked at directly. Also, during certain times of the day from certain angles, sunlight on dust particles in the air might result in the appearance of light streaming down from the tower(s). The power towers likely would strongly attract visual attention, as seen from this viewpoint.

At night, if sufficiently tall, the power towers could have red or white flashing hazard navigation lights that would likely be visible from the national park and could be very conspicuous from this viewpoint, given the dark night skies in the vicinity of the SEZ. Other lighting associated with solar facilities in the SEZ could potentially be visible as well, at least for facilities in the closest portions of the SEZ.

Facilities at greater distances from the viewpoint would be seen at a lower viewing angle, and because the facilities would be seen more edge-on, the visible area of the facilities would be much smaller. Facilities sufficiently far away would appear as lines or thin bands that would tend to repeat the line of the horizon, reducing visual contrast. Atmospheric haze would tend to reduce color contrast and the sharpness of shadows and strong geometric outlines of facility components and, when combined with the low viewing angle, could make distant facilities harder to discern from the background textures, colors, and forms.

Because the viewpoint in this visualization is elevated and very close to the SEZ, the SEZ would occupy most of the field of view, and under the 80% development scenario analyzed in this PEIS, solar facilities within the SEZ would likely dominate the view from this location. Because there could be numerous solar facilities within the SEZ, a variety of technologies employed, and a range of supporting facilities that would contribute to visual impacts, a visually complex, man-made appearing industrial landscape could result. This essentially industrial-appearing lands and would be expected to create strong visual contrasts as viewed from this location within the NP.

Figure 9.4.14.2-5 is a Google Earth visualization of the SEZ as seen from
within the national park on the Chuckwalla Valley floor, near State Route 177,
beyond the southern end of the Coxcomb Mountains. The viewpoint is at the
same elevation as the valley floor at the closest point within the SEZ and is
located approximately 0.4 mi (0.7 km) from the nearest point on the northern

FIGURE 9.4.14.2-5 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from Viewpoint near State Route 177 within Joshua Tree NP

1 2	boundary of the SEZ. The viewpoint is less than 0.1 mi (0.2 km) northwest of State Route 177, and the views from this location are very similar to what
3	would be seen by travelers on State Route 177. The view direction shown in
4	the visualization (east-southeast) is near the middle of an approximately
5	260-degree horizontal arc in which portions of the SEZ and associated solar
6	facilities would be visible from this location before nearby mountains
7	screened the view of the SEZ.
8	
9	The visualization suggests that from this very short distance to the SEZ, the
10	SEZ would be too large to be encompassed in one view, and viewers would
11	need to turn their heads to scan across the whole SEZ. One cluster of four
12	power tower facility models is visible; the two closest towers are nearly
13	equidistant from the viewpoint at approximately 2 mi (3.2 km).
14	
15	The visualization suggests that despite the very short distance to the power
16	towers and associated collector/reflector arrays, because the viewpoint is at
17	the same elevation as the facility, the collector/reflector arrays would be
18	viewed nearly edge-on, greatly reducing the visible area for each facility, and
19	presenting a banded appearance that would repeat the line of the horizon,
20	tending to reduce visual contrast. If nearby facilities used PV systems and
21	low-profile ancillary facilities, the visual impacts would be minimized, but for
22	facilities utilizing STGs, there would be taller structures visible projecting
23	above the collector/reflector arrays, and in some conditions steam plumes
24	could be present that would add significantly to visual contrasts. These taller
25	elements would add vertical line and form contrasts and likely color contrasts
26	as well: steam plumes would add color and possibly line or form contrasts
_ = = 2.7	depending on conditions Depending on height these ancillary facilities could
_ / 28	add significantly to visual contrasts for some facilities. The tops of solar
29 29	collector/reflector arrays in the closest parts of the SEZ likely would not be
30	visible
31	151010.
32	If nower towers were present within the SEZ, when operating nearby
33	receivers likely would appear as brilliant nonpoint (i.e. having visible
34	cylindrical or rectangular surfaces) light sources aton clearly discernable
35	tower structures against the backdron of the sky above the Palen Mountains or
36	against the mountain slopes and could notentially cause discomfort when
37	looked at directly. Also, during certain times of the day from certain angles
38	sunlight on dust particles in the air might result in the appearance of light
30	streaming down from the tower(s). The power towers likely would strongly
3) 40	attract visual attention as seen from this viewpoint. More distant receivers
41	likely would appear as distant points of light against the sky against the
	have backdron of the valley floor, or against the baiadas and slopes of the Dalan
ד∠ //3	Mountains
т <i>э</i> ЛЛ	wioumanis.
 15	At night, if sufficiently tall, the new or toward could have red or white fleshing
ч Ј 16	At fight, it sufficiently fail, the power lowers could like red of while fiasiling
T U	nazaru navigation ngnis that would interv be visible noin the national park

1	and could be very conspicuous from this viewpoint, given the dark night skies
2	in the vicinity of the SEZ. Other lighting associated with solar facilities in the
3	SEZ could potentially be visible as well, at least for facilities in the closest
4	portions of the SEZ.
5	
6	The nature of the visual contrasts from solar facilities in the SEZ as observed
7	from this location would depend on the numbers, types, sizes, and locations of
8	solar facilities in the SEZ and on other project- and site-specific factors, but
9	because the viewpoint is very close to the SEZ, the SEZ would occupy the
10	entire horizontal field of view, and under the 80% development scenario
11	analyzed in this PEIS, solar facilities within the SEZ would likely dominate
12	the view from this location Because there could be numerous solar facilities
13	within the SEZ with a variety of technologies employed and a range of
14	supporting facilities that would contribute to visual impacts a visually
15	complex man-made appearing industrial landscape could result. This
16	essentially industrial appearing landscape would contrast greatly with the
17	surrounding natural appearing lands and would be expected to create strong to
18	very strong visual contrasts as viewed from this location within the NP
10	very strong visual contrasts as viewed from this location within the IVI.
20	Figure 0.4.14.2.6 is a Google Farth visualization of the SEZ as soon from a
20	mountain pack parth of the Dinte Desin, at the parthwestern and of the
21	Cover Mountain peak not in of the Finite Basin, at the not invester in end of the
22	4 200 ft (1 200 m) shows 2 400 ft (1 040 m) shows the values floor at the
23	4,300 ft (1,300 m), about 3,400 ft (1,040 m) above the valley floor at the
24	closest point within the SEZ. The viewpoint is located approximately 8 mi
25	(13 km) from the nearest point on the northern boundary of the SEZ. The view
26	direction shown in the visualization is southeast.
27	
28	The visualization suggests that from this longer distance deeper into the NP,
29	the SEZ can be encompassed in one view. Five clusters of four power tower
30	facility models are visible; the two closest towers are nearly equidistant from
31	the viewpoint at approximately 10 mi (16 km). The farthest tower visible in
32	the image (visible just beyond the end of the Coxcomb Mountains) is
33	approximately 26 mi (42 km) from the viewpoint.
34	
35	The visualization shows that while facilities in the SEZ would be viewed at
36	relatively long distances, from this viewpoint height the tops of solar
37	collector/reflector arrays could be seen, increasing the apparent size of the
38	facility, changing its apparent shape, and increasing potential for glinting and
39	glare. The visualization also shows that the SEZ is large enough that even at
40	relatively long distances, it can occupy a substantial portion of the field of
41	view.
42	
43	The potential visual contrast expected for this viewpoint would depend on the
44	numbers, types, sizes, and locations of solar facilities in the SEZ and on other
45	project- and site-specific factors but while the viewpoint is 8 mi (13 km) from
46	the SEZ the SEZ would occupy nearly the entire horizontal field of view
· •	

FIGURE 9.4.14.2-6 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from Viewpoint in Northwest Coxcomb Mountains within Joshua Tree NP

1	Under the 80% development scenario analyzed in this PEIS, solar facilities
2	within the SEZ would attract visual attention, and would be expected to create
3	strong visual contrasts as viewed from this location within the NP.
5	Figure 9.4.14.2-7 is a Google Earth visualization of the SEZ as seen from a
6	neak within the Fagle Mountains. The viewpoint elevation is approximately
0 7	4 000 ft (1 300 m) about 3 200 ft (580 m) above the valley floor at the closest
8	visible point within the SEZ. The viewpoint is located approximately 11 mi
9	(18 km) from the nearest point on the far western boundary of the SF7. The
10	view direction shown in the visualization is east. Two clusters of four power
11	tower facility models are partially visible: the closest towers are
12	approximately 15 mi (24 km) from the viewpoint
13	upproximatery 15 mi (2 + km) nom the viewpoint.
14	The visualization shows a more typical view of the SEZ from the interior of
15	the national park. The mountainous portions of the park are quite rugged and
16	many views out of the park toward the SEZ would be partially or fully
17	screened by intervening terrain. In this case, much of the view of the distant
18	SEZ is screened by mountains along the eastern edge of the Eagle Mountains.
19	A portion of the SEZ is visible, but solar facilities in the visible area would be
20	distant and seen edge-on. The SEZ occupies too small a portion of the field of
21	view to be visually dominant.
22	
23	Power tower receivers visible within the SEZ would likely appear as points of
24	light near the eastern horizon; lower height facilities might be difficult to
25	distinguish at the long distances involved, at least in many lighting conditions.
26	At night, if sufficiently tall, the power towers could have red or white flashing
27	hazard navigation lights that likely would be visible from this viewpoint,
28	given the dark night skies in the vicinity of the SEZ.
29	
30	The potential visual contrast expected for this viewpoint would depend on the
31	numbers, types, sizes and locations of solar facilities in the SEZ and on other
32	project- and site-specific factors. Under the 80% development scenario
33	analyzed in this PEIS, solar facilities within the SEZ would be expected to
34	create weak visual contrasts as viewed from this location within the park.
35	
36	In summary, Joshua Tree NP borders or is very close to the border of the SEZ,
37	and the southeastern part of the Coxcomb Mountains is essentially surrounded
38	by the SEZ in all directions except looking northwest into the main part of the
39	park. Many of the higher elevations in the Coxcomb Mountains have
40	unobstructed, panoramic views of the SEZ from relatively short distances and
41	elevated viewpoints, a situation conducive to strong levels of visual contrast,
42	especially given the large size of the SEZ and the number, size, and variety of
43	solar facilities that might be visible under the 80% development scenario
44	analyzed in this PEIS. These viewpoints and similar viewpoints would likely
45	be subject to strong levels of visual contrast resulting from solar development
46	within the SEZ under the 80% development scenario. Lower elevation

FIGURE 9.4.14.2-7 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from Viewpoint in Eagle Mountains within Joshua Tree NP

"2009 Google"

1		viewpoints are more likely to be screened by nearby topography, and there are
2		many locations in the park, for example, in valleys, where views of the SEZ
3		are completely screened. Lower elevation viewpoints with clear views of the
4		SEZ will have lower viewing angles, which would be expected to reduce
5		contrasts, but many viewpoints could still be subject to strong visual contrasts.
6		Farther to the west, in the interior of the park, contrasts would be reduced as
7		screening increased and distance to the SEZ increased. Solar facilities within
8		the SEZ might be visible, but they would be either too far or too small in
9		apparent size to cause substantial visual contrasts.
10		11
11		Note that some locations within the Coxcomb Mountains and within the main
12		portion of the park also have partial views of the much more distant proposed
13		Iron Mountain SEZ Overall under the 80% development scenario analyzed in
14		this PEIS solar energy development in the Iron Mountain SEZ would be
15		expected to result in much weaker visual impacts on Joshua Tree NP than
16		expected from development within the Riverside Fast SEZ, but where views
17		of both SEZs existed additional impacts to those described here would occur
18		of both SEES existed, udditional impuets to those described here would beed.
10		
20	Wildornos	ss Arons
20 21	" much nes	5 / 11 C U 5
$\frac{21}{22}$	•	Rig Maria Mountains WA The 16 056 acre (186 km ²) Rig Maria Mountains
22	·	is a congressionally designated wilderness area located adjacent to the
23		northeast corner of the SEZ. It then runs parallel to the northeastern houndary
24 25		notineast corner of the SEZ. It then runs parallel to the notificasteril boundary and is $0.2 \text{ mi} (0.5 \text{ km})$ at the point of algorithm parallel to the notificast of the SEZ. The
23 26		Dig Maria Mountaing contain contly cloning baildes and rough areagy pools
20		Big Maria Mountains contain gentry stoping bajadas and fough, craggy peaks
21		separated by steep canyons. Camping, nunting, niking, backpacking,
28		norseback figures, and whathe viewing are recreational activities in the
29		wilderness area. There are no trails, but there are abandoned jeep tracks that
30 21		are used for hiking.
31		
32		As shown in Figure 9.4.14.2-2, much of the eastern portion of the SEZ is
33		visible from the south- and southwest-facing slopes of the Big Maria
34		Mountains within the wilderness area. Portions of the wilderness area within
35		the 650-ft (198.1-m) SEZ viewshed (approximately 8,875 acres [36 km ²], or
36		19% of the total WA acreage), extend from the point of closest approach at
37		the northeast corner of the SEZ to approximately 0.9 mi (1.5 km) from the
38		SEZ. Portions of the WA within the 24.6-ft (7.5-m) SEZ viewshed encompass
39		approximately 7,420 acres (30.0 km^2), or 16% of the total WA acreage.
40		
41		Figure 9.4.14.2-8 is a Google Earth visualization of the SEZ (highlighted in
42		orange) as seen from an unnamed peak in the Big Maria Mountains, elevated
43		roughly 3,100 ft (940 m) above the bajada at the closest point within the SEZ,
44		and 3,600 ft (1,100 m) above the lowest point in the SEZ. The viewpoint is
45		approximately 2.0 mi (3.2 km) from the nearest point on the northeastern
46		boundary of the SEZ.

FIGURE 9.4.14.2-8 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from a Peak in Big Maria Mountains WA

1	The visualization suggests that from this elevated viewpoint and very short
2	distance to the SEZ, the SEZ would be too large to be encompassed in one
3	view, and viewers would need to turn their heads to scan across the whole
4	SEZ. Three clusters of power tower facility models are visible; the right-most
5	model cluster is approximately 5 mi (8 km) from the viewpoint, and the right
6	center model cluster is 9 mi (15 km) from the viewpoint (both distances to
7	center points of model clusters). The tops of solar collector/reflector arrays in
8	the closest parts of the SEZ would be visible, and the angle of view is high
9	enough that these closer facilities would not repeat the horizontal line of the
10	valley plain. Because of the oblique angle of view, the facilities would appear
11	larger in areal extent than they would from less elevated viewpoints at the
12	same distance, and the strong regular geometry of the collector/reflector
13	arrays would be apparent. These factors would increase visual contrast
14	relative to lower angle views. collector/reflector arrays
15	
16	Taller ancillary facilities, such as buildings, transmission structures, and
17	cooling towers, and plumes (if present) would likely be visible projecting
18	above the collector/reflector arrays, and their structural details could be
19	evident, at least for nearby facilities. The ancillary facilities could create form
20	and line contrasts with the strongly horizontal, regular, and repeating forms
21	and lines of the collector/reflector arrays. Color and texture contrasts would
22	also be likely, but their extent would depend on the materials and surface
23	treatments utilized in the facilities.
24	
25	If power towers were present within the SEZ, when operating, the receivers at
26	short distances would likely appear as brilliant white nonpoint (i.e., having
27	visible cylindrical or rectangular shapes) atop clearly discernable tower
28	structures against the backdrop of the valley floor, while power tower
29	receivers at the longer distances shown here would appear as points of light
30	against the backdrop of the valley floor or the bajadas of the McCoy
31	Mountains. During certain times of the day from certain angles, sunlight on
32	dust particles in the air might result in the appearance of light streaming down

35 At night, if sufficiently tall, the power towers could have red or white flashing 36 hazard navigation lights that likely would be visible from the wilderness area, and could be very conspicuous from this viewpoint, given the dark night skies in the vicinity of the SEZ. Other lighting associated with solar facilities in the 38 39 SEZ could potentially be visible as well, at least for facilities in the closest 40 portions of the SEZ.

from nearby power tower(s).

42 The potential visual contrast expected for this viewpoint would depend on the 43 numbers, types, sizes and locations of solar facilities in the SEZ and on other 44 project- and site-specific factors, but because the viewpoint is elevated and 45 very close to the SEZ, the SEZ would occupy most of the field of view, 46 stretching across the Chuckwalla Valley floor to the bajadas of the McCoy

33

34

37

1	Mountains. Under the 80% development scenario analyzed in this PEIS, there
2	could be numerous solar facilities within the SEZ, a variety of technologies
3	employed, and a range of supporting facilities that would contribute to visual
4	impacts, such as transmission towers and lines, substations, power block
5	components, and roads. The resulting visually complex landscape would be
6	essentially industrial in appearance and would contrast greatly with the
7	surrounding mostly natural-appearing landscape. Solar facilities within the
8	SEZ would likely dominate the view from this location and would be expected
9	to create very strong visual contrasts as viewed from this location within the
10	wilderness area.
11	
12	Most southwest-facing slopes of the Big Maria Mountains within the WA
13	have views similar to that shown in Figure 9.4.14.2-8. At lower elevations, the
14	angle of view is lower, so facilities appear more edge-on, but even at the
15	lowest elevations within the WA, where there is a view of the SEZ, it occupies
16	so much of the field of view that strong visual contrasts from solar
17	development within the SEZ would be likely. Lower levels of visual contrast
18	would be expected for viewpoints farther northeast in the WA, where
19	intervening mountains would be likely to screen views of the SEZ partially.
20	
• 21	Chuckwalla Mountains WA—The 88,202-acre (357-km ²) Chuckwalla
22	Mountains is a congressionally designated wilderness area located 1.1 mi
23	(1.8 km) at the point of closest approach south of the western portion of the
24	SEZ. Rough, boulder-strewn hillsides and washes, thick with vegetation,
25	allow opportunities for visitors to enjoy seclusion. Elevation varies widely
26	from the low-lying bajada at 800 ft (244 m) to the area's highest peak, Black
27	Butte, reaching up to 4,450 ft (1,356 m).
28	
29	The southern and western portions of the SEZ are visible from the bajada and
30	northern slopes and peaks of the wilderness area, but numerous areas in the
31	mountains farther south in the WA also have views of the SEZ. Portions of the
32	wilderness area within the 650-ft (198.1-m) SEZ viewshed (approximately
33	49,913 acres [202 km ²], or 57% of the total wilderness area acreage) extend
34	from the point of closest approach at the southern boundary of the SEZ to
35	approximately 5.9 mi (9.5 km) from the SEZ. Portions of the wilderness area
36	within the 24.6-ft (7.5-m) viewshed encompass approximately 47,186 acres
37	(191 km ²), or 54% of the total wilderness area acreage.
38	
39	Figure 9.4.14.2-9 is a Google Earth visualization of the SEZ as seen from an
40	unnamed peak in the far northern Chuckwalla Mountains within the
41	wilderness area, south of the western end of the SEZ and approximately 3 mi
42	(5 km) southeast of Desert Center. The viewpoint is elevated roughly 1,400 ft
43	(430 m) above the valley floor at the closest point within the SEZ. The
44	viewpoint is approximately 2.4 mi (3.8 km) from the nearest point on the
45	southern boundary of the SEZ. The view direction is north.

FIGURE 9.4.14.2-9 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from a Peak in Western Portion of Chuckwalla Mountains WA

1 The visualization suggests that from this elevated viewpoint and very short 2 distance to the SEZ, the SEZ would be too large to be encompassed in one 3 view, and viewers would need to turn their heads to the right to scan across 4 the whole SEZ, which would extend almost 90 degrees to the right. Four 5 clusters of power tower facility models are visible; the closest tower is 6 approximately 3 mi (5 km) from the viewpoint, and the center of the next 7 model cluster is nearly 10 mi (16 km) from the viewpoint. From this vantage 8 point, the tops of solar collector/reflector arrays in the closest parts of the SEZ 9 would be visible, and the angle of view is high enough that these closer 10 facilities would not repeat the horizontal line of the valley plain. Because of the oblique angle of view, the facilities would appear larger in areal extent 11 12 than they would from less elevated viewpoints at the same distance. 13 14 Taller ancillary facilities, such as buildings, transmission structures, and cooling towers, and plumes (if present) likely would be visible projecting 15 16 above the collector/reflector arrays, and their structural details could be 17 evident at least for nearby facilities. The ancillary facilities could create form and line contrasts with the strongly horizontal, regular, and repeating forms 18 19 and lines of the collector/reflector arrays. Color and texture contrasts would 20 also be likely, but their extent would depend on the materials and surface 21 treatments utilized in the facilities. 22 23 If power towers were present within the SEZ at the distance corresponding to the closest tower in the model, the receivers would likely appear as brilliant 24 25 nonpoint (i.e., having visible cylindrical or rectangular surfaces) light sources 26 atop clearly discernable tower structures against the backdrop of the valley 27 floor, while power tower receivers at the longer distances shown here would appear as points of light against the backdrop of the distant valley floor. For 28 29 nearby power towers, during certain times of the day from certain angles, 30 sunlight on dust particles in the air might result in the appearance of light 31 streaming down from the tower(s). Details of solar array components and 32 ancillary facilities might be visible in the closest parts of the SEZ. 33 34 At night, if sufficiently tall, the power towers could have red or white flashing hazard navigation lights that likely would be visible from the wilderness area 35 36 and could be very conspicuous from this viewpoint, given the dark night skies 37 in the vicinity of the SEZ; however, views would be across I-10, and lights from traffic likely would be visible. Other lighting associated with solar 38 39 facilities in the SEZ could potentially be visible as well, at least for facilities 40 in the closest portions of the SEZ. 41 42 The potential visual contrast expected for this viewpoint would depend on the 43 numbers, types, sizes and locations of solar facilities in the SEZ and on other 44 project- and site-specific factors, but because the viewpoint is elevated and 45 very close to the SEZ, the SEZ would occupy most of the field of view, 46 stretching across the Chuckwalla Valley floor almost to the bajadas of the

1	distant Palen Mountains. Under the 80% development scenario analyzed in
2	this PEIS, there could be numerous solar facilities within the SEZ, a variety of
3	technologies employed, and a range of supporting facilities that would
4	contribute to visual impacts, such as transmission towers and lines,
5	substations, power block components, and roads. The resulting visually
6	complex landscape would be essentially industrial in appearance and would
7	contrast greatly with the surrounding mostly natural-appearing landscape.
8	Under the 80% development scenario, solar facilities within the SEZ would
9	likely dominate the view from this location and would be expected to create
10	strong visual contrasts as viewed from this location within the wilderness area.
11	
12	Figure 9.4.14.2-10 is a Google Earth visualization of the SEZ as seen from an
13	unnamed peak in the far eastern Chuckwalla Mountains within the wilderness
14	area south of the southeastern end of the Coxcomb Mountains The viewpoint
15	is elevated roughly 1 600 ft (430 m) above the valley floor at the closest point
16	within the SEZ. The viewpoint is approximately 5.8 mi (9.3 km) from the
17	nearest point on the southern boundary of the SEZ. The view direction is
18	north
19	10101
20	The visualization suggests that from this elevated viewpoint because of the
21	breadth of the SEZ east-to-west the SEZ would be too large to be
22	encompassed in one view and viewers would need to turn their heads to scan
23	across the whole SEZ which would extend over much of the northern
24	horizon Four clusters of power tower facility models are visible: the closest
25	tower is approximately 8 mi (13 km) from the viewpoint and the center of the
26	next model cluster is 14 mi (23 km) from the viewpoint. From this vantage
27	point the tops of solar collector/reflector arrays in the closest parts of the SEZ
28	would be visible but the angle of view is low enough that these closer
29	facilities might repeat the horizontal line of the valley plain, depending on the
30	facility layout. The low angle of view would reduce the apparent areal extent
31	of the facilities
32	
33	Taller ancillary facilities, such as buildings, transmission structures, and
34	cooling towers, and plumes (if present) likely would be visible projecting
35	above the collector/reflector arrays, and their structural details could be
36	evident at least for nearby facilities. The ancillary facilities could create form
37	and line contrasts with the strongly horizontal regular and repeating forms
38	and lines of the collector/reflector arrays. Color and texture contrasts would be
39	possible for nearby facilities but their extent would depend on the materials
40	and surface treatments utilized in the facilities
41	
42	If power towers were present within the SEZ at the distance corresponding to
43	the closest tower in the model the receivers would likely appear as bright
44	light sources atop discernable tower structures against the backdron of the
45	valley floor, while power tower receivers at the longer distances shown here

FIGURE 9.4.14.2-10 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from a Peak in Eastern Portion of Chuckwalla Mountains WA

1 2	would appear as distant points of light against the backdrop of the distant valley floor.
3	
4	At night, if sufficiently tall, the power towers could have red or white flashing
5	hazard navigation lights that could be conspicuous from this viewpoint, given
6	the dark night skies in the vicinity of the SEZ. Other lighting associated with
7	solar facilities in the SEZ could potentially be visible as well, at least for
8	facilities in the closest portions of the SEZ.
9	
10	The potential visual contrast expected for this viewpoint would depend on the
11	numbers, types, sizes and locations of solar facilities in the SEZ and on other
12	project- and site-specific factors, but because the viewpoint is elevated and the
13	SEZ so large, the SEZ would appear to stretch across the Chuckwalla Valley
14	floor roughly 25 mi (40 km) to the east. Under the 80% development scenario
15	analyzed in this PEIS, there could be numerous solar facilities within the SEZ,
16	a variety of technologies employed, and a range of supporting facilities that
17	would contribute to visual impacts, such as transmission towers and lines,
18	substations, power block components, and roads. The resulting visually
19	complex landscape would be essentially industrial in appearance and would
20	contrast greatly with the surrounding mostly natural-appearing landscape.
21	Under the 80% development scenario solar facilities within the SEZ would
22	attract attention might dominate the view from this location and would be
23	expected to create strong visual contrasts as viewed from this location within
24	the WA
25	
25 26	Figure 9.4.14.2-11 is a Google Earth visualization of the SEZ as seen from
20	Corn Springs Road on the bajada in the far northeastern portion of the WA
28	The viewpoint is elevated about 200 ft (60 m) above the valley floor at the
20	closest point within the SFZ and is approximately 3.3 mi (5.4 km) from the
30	nearest point on the boundary of the SEZ. The view looks east down L10 to
31	the eastern portion of the SEZ
32	the eastern portion of the SEZ.
32	The SEZ in the vicinity of this viewnoint is only a few miles across north to
3/	south and because the elevation of the viewpoint is only minimally elevated
35	relative to the SEZ the SEZ and very distant beliestat arrays depicted in the
36	notative to the SEZ, the SEZ and very distant henostat arrays depicted in the
30	and repeating the strong horizon line and thus greatly reducing their visible
20	and repeating, the strong horizon line and thus greatly reducing their visible
30 20	(27 km) from the viewmeint. The viewelization also shows that from this
39 40	(27 km) from the viewpoint. The visualization also shows that from this
40	viewpoint, the SEZ would be too large to be encompassed in one view, and
41	viewers would need to turn their neads to scan across the whole SEZ, which
42	would span much of the northern and eastern horizons.
43	
44	I ransmission towers could be visible above the solar collector/reflector
45	arrays. It power towers were present within the SEZ, at the distance shown
46	here, the receivers could appear as distant point light sources against the

FIGURE 9.4.14.2-11 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from Corn Springs Road on Bajada in Chuckwalla Mountains WA

1 2 3	backdrop of the McCoy Mountains. At night, if sufficiently tall, the power towers could have red or white flashing hazard navigation lights that could be seen from this viewpoint, given the dark night skies in the vicinity of the SEZ.	
5 6 7 8 9	The potential visual contrast expected for this viewpoint would depend on the numbers, types, sizes and locations of solar facilities in the SEZ and on other project- and site-specific factors. Under the 80% development scenario, solar facilities within the SEZ would be expected to create weak to moderate visual contrasts as viewed from this location within the wilderness area.	
10		
11	In summary, higher elevations in the Chuckwalla WA have extended open	
12	views of the SEZ and could be subject to high levels of visual contrast	
13	associated with solar energy development within the wilderness area.	
14	Viewpoints on the bajada would still have expansive views of the SEZ but,	
15	primarily because of the lower viewing angle, would be expected to be	
16	subjected to substantially lower levels of visual contrast.	
17		
18 •	<i>Imperial Refuge WA</i> —The 15,714-acre (64-km ²) Imperial Refuge is a	
19	congressionally designated wilderness area managed by the USFWS located	
20	22 mi (36 km) at the point of closest approach south of the SEZ. The	
21	wilderness area includes low, heavily vegetated land along the Colorado River	
22	as well as higher areas with less vegetation on both sides of the river. Portions	
23	of the wilderness area within the 650-ft (198.1-m) SEZ viewshed	
24	(approximately 560 acres [2 km ²], or 4% of the total wilderness area acreage)	
25	extend from the point of closest approach at the southern boundary of the SEZ	
26	to beyond 25 mi (41 km) from the SEZ. Portions of the wilderness area within	
27	the 24.6-ft (7.5-m) viewshed encompass approximately 468 acres (2 km ²), or	
28	3% of the total wilderness area acreage.	
29		
30	The far southeastern corner of the SEZ is visible from some areas within the	
31	northern portion of the wilderness area. Within 25 mi (41 km) of the SEZ,	
32	where vegetative screening is absent, solar facilities located in the far	
33	southeastern portions of the SEZ might be visible from the highest points	
34	within the wilderness area. Because of the very long distance to the SEZ and	
35	screening by the Palo Verde Mountains, visible portions of the SEZ would	
36	occupy a very small portion of the field of view. The wilderness area is at a	
37	slightly lower elevation than the SEZ. Any visible solar facilities within the	
38	SEZ would be viewed at very low angles. Solar collector/reflector arrays	
39	would be viewed edge-on and, at distance approaching 25 mi (41 km), are	
40	unlikely to be distinguishable. If power towers were visible, they would likely	
41	appear as distant point light sources on the northern horizon. At night, if	
42	sufficiently tall, the power towers could have red or white flashing hazard	
43	navigation lights that could be visible from the wilderness area. Visual	
44	impacts on the Imperial Refuge WA from solar development within the SEZ	
45	would be expected to be minimal.	
1	•	Joshua Tree WA—Joshua Tree is a 586,623-acre (2,374-km ²) congressionally designated wilderness area managed by the NPS and located entirely within
------------------	---	--
2		Loshua Trop ND. A spotion of the WA divides the western portion of the SEZ
5		Joshua Thee NF. A section of the WA divides the western polition of the SEZ
4		and is located adjacent to its boundaries. This section is almost entirely within the circulation of the scillar section is almost entirely within $f(x) = f(x) + $
5		the viewshed. Portions of the wilderness area within the 650-ft (198.1-m) SEZ
6		viewshed (approximately 99,460 acres [403 km ²], or 17% of the total
/		wilderness area acreage) extend from the point of closest approach at the
8		northwestern boundary of the SEZ to approximately 13.6 mi (21.9 km)
9		northwest from the SEZ. Portions of the wilderness area within the 24.6-ft
10		(7.5-m) viewshed encompass approximately 55,203 acres (224 km ²), or 9% of
11		the total wilderness area acreage. Expected visual contrast levels for the
12		wilderness area are the same as those expected for the national park (see
13		above).
14		
15	•	<i>Little Chuckwalla Mountains WA</i> —The 28,708-acre (116-km ²) Little
16		Chuckwalla Mountains is a congressionally designated wilderness area
17		located 5.0 mi (8.1 km) at the point of closest approach south of the SEZ. The
18		wilderness area contains rugged mountains surrounded by a large, gently
19		sloping bajada with a network of washes.
20		
21		Within the wilderness area, the SEZ is visible from the north- and northwest-
22		facing slopes and the peaks of the Little Chuckwalla Mountains, as well as all
23		of the north-facing bajada and the southern portions of the south-facing
24		bajada. Portions of the wilderness area within the 650-ft (198.1-m) SEZ
25		viewshed (approximately 16,729 acres [68 km ²], or 58% of the total
26		wilderness area acreage) extend from the point of closest approach at the
27		southern boundary of the SEZ to approximately 14.0 mi (23 km) from the
28		SEZ. Portions of the wilderness area within the 24.6-ft (7.5-m) viewshed
29		encompass approximately 14,319 acres (58 km ²), or 50% of the total
30		wilderness area acreage.
31		
32		Figure 9.4.14.2-12 is a Google Earth visualization of the SEZ as seen from a
33		high, unnamed peak in the Little Chuckwalla Mountains, in the far eastern
34		portion of the wilderness area, approximately 8 mi (13 km) from the SEZ.
35		south of the Palen Dunes Drive interchange on I-10. At approximately 1,900 ft
36		(530 m) the viewpoint elevation is about 1 700 ft (520 m) above the elevation
37		of the valley floor. The visualization suggests that from this elevated
38		viewpoint the SEZ would be too large to be encompassed in one view and
39		viewers would need to turn their heads to scan across the whole SEZ:
40		however, the angle of view is low enough that the valley floor would appear
41		as a hand across the base of the mountains. Because solar facilities in the
<u>4</u> 2		valley would be viewed from a low oblique angle, the visible surface area of
43		the facilities would be reduced the strong regular geometry of the
44		collector/reflector arrays would be less apparent and associated visual
 45		impacts would be reduced in proportion
т <i>э</i> Л6		mpacts would be reduced in proportion.
UΤ		

FIGURE 9.4.14.2-12 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from a Peak in Eastern Portion of Little Chuckwalla Mountains WA

1	At the 80% development scenario analyzed in this PEIS, a large portion of the
2	Chuckwalla Valley north of I-10 visible from this location would be occupied
3	by a variety of solar facilities with associated transmission facilities and roads.
4	stretching across the valley floor to the base of the bajada of the Palen
5	Mountains and to the other mountain ranges north of the SEZ. While the tops
6	of solar collector/reflector arrays located within the SEZ nearest to this
8 7	viewpoint might be visible solar collector/reflector arrays within most of the
8	SEZ visible from this viewpoint would be seen nearly edge-on reducing their
9	apparent size and repeating the line of the horizon, which would tend to
10	reduce visual contrast
11	
12	Taller ancillary facilities such as buildings transmission structures and
12	cooling towers and plumes (if present) could potentially be visible projecting
13	above the collector/reflector arrays. The ancillary facilities could create form
14	and line contrasts with the strongly horizontal regular, and repeating forms
15	and lines of the collector/reflector arrays
10	and miles of the conceton/reflector arrays.
18	Power tower receivers within the SEZ could be visible as dim to bright points
10	of light across almost the entire northern horizon, against the backdron of the
20	Palen Mountains and the other ranges north of the SEZ At night if
20	sufficiently tall the power towers could have red or white flashing hazard
21	navigation lights that would likely be visible from the WA and could be seen
22	from this viewpoint
25	nom uns viewponie.
25	Despite the low angle of view and considerable distance from many portions
25	of the SEZ the SEZ occupies such a large area within the view from this
27	location that solar development within the SEZ under the 80% development
28	scenario would be likely to create strong visual contrasts with the surrounding
29	landscape that could dominate the views from this location especially toward
30	the northeast where a larger portion of the SEZ is visible at a relatively
31	shorter distance
32	
33	Figure 9.4.14.2-13 is a Google Earth visualization of the SEZ as seen from a
34	two-track road on the baiada at the base of the northern slopes of the Little
35	Chuckwalla Mountains in the northeastern portion of the wilderness area
36	approximately 6.4 mi (10.3 km) from the SEZ southwest of the Palen Dunes
37	Drive interchange on I-10. The viewpoint elevation is approximately 660 ft
38	(200 m) about 300 ft (90 m) above the valley floor. In this case, the
39	viewpoint is somewhat closer to the SEZ than that for the view shown in
40	Figure 9.4.14.2-12 but the elevation is much lower significantly decreasing
41	the angle of view. The visualization suggests that from this viewpoint, the
42	SEZ would be too large to be encompassed in one view and viewers would
ч <u>∠</u> 43	need to turn their heads to scan across the whole SEZ however, the angle of
т <i>э</i> ЛЛ	view is low enough that solar facilities in the valley would be viewed nearly
45	edge-on so the visible surface area of the facilities would be reduced the
т <i>э</i> Л6	cuge-on, so the visible surface area of the facilities would be reduced, the
UT	

FIGURE 9.4.14.2-13 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from a Road on the Bajada in Little Chuckwalla Mountains WA

1	strong regular geometry of the collector/reflector arrays would be less apparent and associated visual impacts would be reduced in proportion
3	apparent, and associated visual impacts would be reduced in proportion.
4	From this relatively low viewpoint the tops of solar collector/reflector arrays
5	located within the SEZ would not likely be visible, but power block facilities.
6	transmission towers steam plumes and other tall facility components would
° 7	likely project above collector/reflector arrays adding short vertical lines to the
8	strongly horizontal landscape, and adding some visual contrast. Power tower
9	receivers within the SEZ could be visible as dim to bright points of light
10	across almost the entire northern horizon against the backdron of the Palen
11	Mountains and the other ranges north of the SEZ
12	
13	Visual contrasts observed from this low-elevation location would be expected
14	to be lower than those from more elevated viewpoints at the same or
15	somewhat longer distances from the SEZ At the 80% development scenario
16	analyzed in this PEIS, a variety of solar facilities with associated transmission
17	and roads would appear to stretch across the valley floor across nearly the
18	entire northern horizon and to the base of the baiada of the Palen Mountains
19	and to the other mountain ranges north of the SEZ. Resulting visual contrasts
20	would likely be strong.
21	
22	Because of the southwest-to-northeast orientation of the wilderness area,
23	viewpoints in the southwestern portion of the wilderness area are 10 to 14 mi
24	(16 to 23 km) from the SEZ. From some locations in the southwest portion of
25	the wilderness area, particularly at lower elevations, nearby mountain ridges
26	screen portions of the SEZ to the extent that expected visual contrasts
27	associated with solar facilities visible within the SEZ would be moderate.
28	
• 29	Orocopia Mountains WA—The 54,709-acre (221-km ²) Orocopia Mountains is
30	a congressionally designated wilderness area located 13 mi (21 km) at the
31	point of closest approach southwest of the SEZ. The wilderness area provides
32	dramatic scenery, with open valleys, ridges, and highly colorful and
33	dramatically eroded canyons.
34	
35	The SEZ is visible from both the low mountains in the far northeast portion of
36	the wilderness area and the higher mountains closer to the center of the
37	wilderness area. Portions of the wilderness area within the 650-ft (198.1-m)
38	SEZ viewshed (approximately 2,251 acres [9 km ²], or 4% of the total WA
39	acreage) extend from the point of closest approach to approximately 15.7 mi
40	(25.3 km) from the SEZ. Portions of the wilderness area within the 24.6-ft
41	(7.5-m) viewshed encompass approximately 1,409 acres (6 km ²), or 3% of the
42	total wilderness area acreage.
43	
44	From the far northeastern section of the WA, the SEZ is visible beyond I-10
45	through the western end of the Chuckwalla Valley. The distance to the SEZ
46	exceeds 13 mi (21 km), so the angle of view is low. Parts of the SEZ are

1	screened by the Eagle Mountains and the Chuckwalla Mountains, so the
2	SEZ occupies a small portion of the horizontal field of view. Solar
3	collector/reflector arrays within the SEZ that were visible from the wilderness
4	area would be seen edge-on, reducing their apparent size, concealing their
5	strong regular geometry, and repeating the line of the horizon, which would
6	tend to reduce visual contrast. Power towers within the SEZ could be visible
7	as distant points of light on the northeast horizon, against the backdrop of the
8	Chuckwalla Valley floor or the mountain ranges northeast of the valley. At
9	night, if sufficiently tall, the power towers could have red or white flashing
10	hazard navigation lights that would likely be visible from the wilderness area.
11	
12	The mountains closer to the center of the wilderness area, while higher, are
13	more than 20 mi (36 km) distant from the SEZ, and in some areas, uplands in
14	the northeast portion of the Orocopia Mountains themselves provide
15	additional screening of the SEZ. Because of the additional distance to the SEZ
16	and (in some areas) the additional screening, the SEZ occupies an even
17	smaller portion of the field of view, with weaker visual contrasts expected as a
18	result
19	
20	Visual contrasts associated with solar energy development within the SEZ
21	would depend on viewer location within the wilderness area: the numbers
22	types sizes and locations of solar facilities in the SEZ and on other project-
23	and site-specific factors. Where there was a clear view of the SEZ under the
23	80% development scenario analyzed in this PEIS weak levels of visual
24	contrast would be expected. The highest contrast levels would be expected for
25	locations in the far northeastern part of the wilderness area, with lower
20 27	contrasts expected for locations in the more central mountains in the
28	wilderness area
20	wildemess area.
30 •	Palen-McCov $W4$ —Palen-McCov is a 224 414-acre (908-km ²)
31	congressionally designated wilderness area located adjacent to both the
32	northern houndary and eastern houndary of the western portion of the SFZ
33	The wilderness area contains five separate mountain ranges separated by wide
34	haiadas and encompasses several landscape types, from desert pavement
35	bajadas interior valleys and canyons to dense ironwood forests steen
36	canyons, and rugged needs. Unlike most other wilderness areas around the
30 27	proposed SEZs, in some group the Palen McCov WA extends well beyond the
20	mountaing down the bridd and as much as 7 mi (12 km) or more out onto the
20	Chuelwalle Valley floor Comping hilting healmosting herseheelt riding
39 40	Chuckwaha valley hoor. Camping, hiking, backpacking, horseback huing,
40	nunung, and whome viewing are recreational activities in the wholeness area.
41	Mark a fithe CE7 is sight from the services worth and a fithing and the
4∠ 42	Which of the SEZ is visible from the various portions of this large wilderness
43 44	area. The SEZ essentially surrounds the Wilderness area on all sides except
44	north (the north side of the wilderness area faces the Iron Mountain SEZ).
45	Portions of the wilderness area within the 650-ft (198.1-m) SEZ viewshed
46	(approximately 1/0,660 acres [691 km ²], or 76% of the total wilderness area

1 2	acreage) extend from adjacent to the SEZ at the northeast corner of the western portion to approximately 7.6 mi (12.2 km) from the SEZ. Portions of
3	the wilderness area within the 24.6-ft (7.5-m) viewshed encompass
4	approximately 151,549 acres (613 km ²), or 68% of the total wilderness area
5	acreage.
6	
7	Figure 9.4.14.2-14 is a Google Earth visualization of the SEZ as seen from an
8	unnamed peak at the far southern end of the Palen Mountains, elevated
9	roughly 1,900 ft (580 m) above the valley floor at the closest point within the
10	SEZ and approximately 4.0 mi (6.5 km) from the nearest point on the
11	boundary of the SEZ, about 5 mi (8 km) north of I-10. The view direction is
12	south-southeast.
13	
14	The visualization shows that because the wilderness area extends several
15	miles down the bajada to the south, the SEZ boundary is substantially farther
16	away from the mountains than would be the case for many other wilderness
17	areas, where the wilderness area boundaries typically are located at the base of
18	the mountain slopes. The additional distance to the SEZ means that solar
19	facilities within the SEZ would also be several miles farther from the
20	wilderness area than they might otherwise be, substantially reducing visual
21	contrast levels.
22	
23	The visualization also shows that from this elevated viewpoint and relatively
24	short distance to the SEZ, the SEZ would be too large to be encompassed in
25	one view, and viewers would need to turn their heads to scan across the whole
26	SEZ. Two clusters of power tower facility models are visible; the left-most
27	model cluster is approximately 15 mi (24 km) from the viewpoint, and the
28	right-most model cluster is 8 mi (13 km) from the viewpoint (both distances to
29	center points of model clusters). The tops of solar collector/reflector arrays in
30	the closest parts of the SEZ likely would be visible, but the angle of view is
31	low enough that most solar collector/reflector arrays visible in the SEZ from
32	this location would be viewed nearly edge-on, reducing their apparent size and
33	repeating the horizontal line of the valley plain. If power towers were present
34	within the SEZ, at the shorter distances shown here, the receivers could appear
35	as very bright point or nonpoint (i.e., having visible cylindrical or rectangular
36	surfaces) light sources atop discernable tower structures against the backdrop
37	of the valley floor. Power tower receivers located at the farther distances
38	depicted here would likely appear as distant points of light against the
39	backdrop of the valley floor or the bajadas of the mountains on the eastern
40	side of the SEZ.
41	
42	At night, if sufficiently tall, the power towers could have red or white flashing
43	hazard navigation lights that likely would be visible from the WA and could
44	be very conspicuous from this viewpoint, given the dark night skies in the
45	vicinity of the SEZ. Other lighting associated with solar facilities in the SEZ

FIGURE 9.4.14.2-14 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from a Peak in Southern Palen-McCoy WA

1	could potentially be visible as well, at least for facilities in the closest portions
2	of the SEZ. The potential visual contrast expected for this viewpoint would
3	depend on the numbers, types, sizes and locations of solar facilities in the SEZ
4	and on other project- and site-specific factors, but because the viewpoint is
5	elevated and relatively close to the SEZ, the SEZ would occupy much of the
6	field of view. Under the 80% development scenario analyzed in this PEIS,
7	there could be numerous solar facilities within the SEZ, a variety of
8	technologies employed, and a range of supporting facilities that would
9	contribute to visual impacts, such as transmission towers and lines,
10	substations, power block components, and roads. The resulting visually
11	complex landscape could potentially dominate the view from this location.
12	Under the 80% development scenario, solar facilities within the SEZ would be
13	expected to create strong visual contrasts as viewed from this location within
14	the WA.
15	
16	Figure 9.4.14.2-15 is a Google Earth visualization of the SEZ as seen from an
17	unnamed peak on the western side of the Palen Mountains across from the
18	Coxcomb Mountains, elevated roughly 2.300 ft (700 m) above the valley floor
19	at the closest point within the SEZ, and approximately 3 mi (5 km) from the
20	nearest point on the boundary of the SEZ. The view looks west to the Eagle
21	and Coxcomb Mountains in Joshua Tree NP.
22	
23	The visualization shows that the wilderness area extends approximately 1.5 mi
24	(2.4 km) down the bajada to the west. The visualization also shows that from
25	this elevated viewpoint and relatively short distance to the SEZ, the SEZ
26	would be too large to be encompassed in one view, and viewers would need to
27	turn their heads to scan across the whole SEZ. Two clusters of power tower
28	facility models are visible; the left-most model cluster is approximately 8 mi
29	(13 km) from the viewpoint, and the right-most model cluster is 9.5 mi
30	(15 km) from the viewpoint (both distances to center points of model
31	clusters). The tops of solar collector/reflector arrays in the closest parts of the
32	SEZ would likely be visible, but the angle of view is low enough that solar
33	collector/reflector arrays visible in the farthest part of the SEZ visible from
34	this location would be viewed nearly edge-on, reducing their apparent size,
35	tending to conceal their strong regular geometry, and repeating the horizontal
36	line of the valley plain.
37	
38	Taller ancillary facilities, such as buildings, transmission structures, and
39	cooling towers, and plumes (if present) likely would be visible projecting
40	above the collector/reflector arrays, and their structural details could be
41	evident, at least for nearby facilities. The ancillary facilities could create form
42	and line contrasts with the strongly horizontal, regular, and reneating forms
43	and lines of the collector/reflector arrays. Color and texture contrasts would
44	also be likely, but their extent would depend on the materials and surface
45	treatments utilized in the facilities.
46	

FIGURE 9.4.14.2-15 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from a Peak in Western Palen-McCoy WA

If power towers were present within the SEZ, at the shorter distances shown here, the receivers could appear as very bright white light sources atop clearly discernable tower structures against the backdrop of the valley floor. Power tower receivers located at the farther distances depicted here would likely appear as distant points of light against the backdrop of the valley floor or the bajadas of the Eagle Mountains.

At night, if sufficiently tall, the power towers could have red or white flashing hazard navigation lights that could be conspicuous from this viewpoint, given the dark night skies in the vicinity of the SEZ. Other lighting associated with solar facilities in the SEZ could potentially be visible as well, at least for facilities in the closest portions of the SEZ.

The potential visual contrast expected for this viewpoint would depend on the numbers, types, sizes, and locations of solar facilities in the SEZ and on other project- and site-specific factors, but because the viewpoint is elevated and relatively close to the SEZ, the SEZ would occupy much of the field of view. Under the 80% development scenario analyzed in this PEIS, there could be numerous solar facilities within the SEZ, a variety of technologies employed, and a range of supporting facilities that would contribute to visual impacts, such as transmission towers and lines, substations, power block components, and roads. The resulting visually complex landscape could potentially dominate the view from this location. Under the 80% development scenario, solar facilities within the SEZ would be expected to create strong visual contrasts as viewed from this location within the wilderness area.

27 Figure 9.4.14.2-16 is a Google Earth visualization of the SEZ as seen from an unpaved road on the bajada in the far southeastern portion of the wilderness 28 29 area. The viewpoint is elevated about 130 ft (40 m) above the valley floor at 30 the closest point within the SEZ, and is approximately 3 mi (5 km) from the nearest point on the boundary of the SEZ. The view looks southwest to the 32 Little Chuckwalla Mountains beyond I-10.

34 The SEZ in the vicinity of this viewpoint is only 3.5 (5.6 km) across, northeast 35 to southwest, and because the elevation of the viewpoint is only minimally 36 elevated relative to the SEZ, the SEZ and heliostat arrays depicted in the 37 power tower model cluster appear edge-on, as a very narrow band parallel to, and repeating, the strong horizon line and thus greatly reducing their visible 38 39 area and associated visual contrast. The model is approximately 5 mi (8 km) from the viewpoint. The visualization also shows that from this elevated 40 viewpoint and relatively short distance to the SEZ, the SEZ would be too large 41 42 to be encompassed in one view, and viewers would need to turn their heads to 43 scan across the whole SEZ, which would span the entire southern horizon. If 44 power towers were present within the SEZ, at the distance shown here, the 45 receivers could appear as very bright point light sources atop clearly

1

2

3

4

5

6

7 8

9

10

11 12

13 14

15

16

17

18 19

20

21

22

23

24

25

26

31

FIGURE 9.4.14.2-16 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from a Road on the Bajada in Palen-McCoy WA

1	discernable tower structures against the backdrop of the Little Chuckwalla
2	Mountains. Transmission towers would be visible above the solar
3	collector/reflector arrays. Plumes from CSP plants could be visible above the
4	collector/reflector arrays, depending on lighting and atmospheric conditions,
5	as could be the tops of ancillary buildings. Glare and glinting might be
6	possible from the sides of collector/reflector arrays.
7	
8	The notential visual contrast expected for this viewpoint would vary
9	depending on project locations, technologies, and site designs. Under the 80%
10	development scenario, solar facilities within the SFZ would be expected to
11	create weak to moderate visual contrasts as viewed from this location within
12	the wilderness area
12	the white these area.
13	In summary the Dolon McCov WA is very large and unlike most wilderness
14	In summary, the Faten-Weedy walls very large and, unite most white mess
15	this second the effect of beauting color facilities within the CEZ second
10	this would have the effect of keeping solar facilities within the SEZ away
1/	from many of the higher elevation viewpoints in the wilderness area.
18	Nonetheless, virtually the entire SEZ is visible from the various portions of
19	the wilderness area, and while perceived contrast levels would depend on
20	viewer location within the wilderness area, and on the numbers, types, sizes,
21	and locations of solar facilities in the SEZ, as well as on other project- and
22	site-specific factors, many higher elevation viewpoints within the wilderness
23	area could be subject to strong visual contrasts from solar energy development
24	within the SEZ under the 80% development scenario.
25	
26	Note that some locations within the wilderness area also have partial views of
27	the proposed Iron Mountain SEZ, in the Ward Valley north of the wilderness
28	area. Where views of both SEZs exist, additional impacts to those described
29	here would occur.
30	
31	• Palo Verde Mountains WA—The 30,403-acre (123-km ²) Palo Verde
32	Mountains WA is a congressionally designated wilderness area located 6.2 mi
33	(10.0 km) at the point of closest approach south of the SEZ. The wilderness
34	area includes twin buttes known as the Flat Tops, which stand out as a
35	landmark against a range of jagged peaks. Palo Verde Peak is the high point
36	of the range rising to 1 800 ft (550 m)
37	
38	The southeastern portion of the SEZ is visible from higher elevations
30	throughout all but the southwestern portion of the wilderness area. Portions of
40	the wilderness area within the 650-ft (198 1-m) SF7 viewshed (approximately
-το Δ1	13 252 acres $[54 \text{ km}^2]$ or 43.6% of the total wilderness area acrease) extend
тт 42	from the point of alogest approach to approximately 14.2 mi (22.0 km) from
+∠ 42	the SEZ Dertions of the wilderness area within the 24.6 ft (7.5 m) viewshed
43 44	une SEZ. Polytons of the winderness area within the 24.0-it (/.3-m) viewshed an compass approximately 8.715 cores (25 km ²) or $200/$ of the total
44	encompass approximately 8,/15 acres (35 km ²), or 29% of the total
43	whitemess area acreage.
40	

1	Figure 9.4.14.2-17 is a Google Earth visualization of the SEZ as seen from
2	Milpitas Wash Road, along the border of the northwestern portion of the
3	wilderness area, approximately 8 mi (13 km) from the closest point in the
4	SEZ, just west of the Mule Mountains. The viewpoint elevation is about 30 ft
5	(10 m) above the elevation of the closest point in the SEZ. The visualization
6	suggests that minor undulations in elevation between the viewpoint and the
° 7	SEZ would screen portions of the SEZ from view and that the Mule
8	Mountains would also partially screen views of the SEZ. The SEZ occupies a
9	substantial portion of the horizontal field of view but the angle of view is
10	very low Solar collector/reflector arrays within the SEZ visible from the
11	wilderness area would be seen edge-on reducing their apparent size and
12	repeating the line of the horizon, which would tend to reduce visual contrast
12	repeating the fine of the horizon, which would tend to reduce visual contrast.
13	Taller ancillary facilities, such as buildings, transmission structures, and
14	appling toward, and plumos (if progent) could potentially be visible projecting
15	above the collector/reflector arrays, at least for nearby facilities. The angillary
10	facilities could create form and line contrasts with the strengly herizontal
17	regular, and repeating forms and lines of the collector/reflector arrays
10	regular, and repeating forms and miles of the conector/reflector arrays.
19	Dower towers within the SEZ could be visible as points of light on the
20	rower towers within the SEZ could be visible as points of light on the
21	if sufficiently tall, the newer toward could have red or white flaghing hererd
22	In sufficiently tail, the power towers could have red of white flashing flazard
23	navigation lights that likely would be visible from the winderness area and
24	could be conspicuous from this viewpoint, given the dark night skies in the
25	vicinity of the SEZ. Other lighting associated with solar facilities in the SEZ
26	could potentially be visible as well, at least for facilities in the closest portions
27	of the SEZ.
28	
29	Figure 9.4.14.2-18 is a Google Earth visualization of the SEZ as seen from
30	Palo Verde Peak, in the far southeastern portion of the wilderness area,
31	approximately 13 mi (21 km) from the far southeastern corner of the SEZ, just
32	east of the Mule Mountains. At 1,800 ft (550 m), the viewpoint elevation is
33	about 1,400 ft (430 m) above the elevation of the closest point in the SEZ. The
34	visualization suggests that while the Mule and Little Chuckwalla Mountains
35	would partially screen views of the SEZ, because of its vast size the SEZ
36	would stretch across most of the horizontal field of view. Despite the height of
37	the viewpoint, the angle of view is very low, because the distance to the SEZ
38	exceeds 13 mi (21 km). Solar collector/reflector arrays within the SEZ visible
39	from this viewpoint would be seen edge-on, reducing their apparent size and
40	repeating the line of the horizon, which would tend to reduce visual contrast.
41	Power towers within the SEZ could be visible as distant points of light on the
42	northern and northwestern horizon, against the backdrop of the Big Maria
43	Mountains and the other ranges north of the SEZ. At night, if sufficiently tall,
44	the power towers could have red or white flashing hazard navigation lights
45	that could be visible from this viewpoint.
46	

FIGURE 9.4.14.2-17 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from Milpitas Wash Road in the Palo Verde Mountains WA

LICENSIS DESCRIPTION

COOSIG COOSIG

FIGURE 9.4.14.2-18 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from Palo Verde Peak in the Palo Verde Mountains WA

Visual contrasts associated with solar energy development within the SEZ would depend on viewer location within the wilderness area; on the numbers, types, sizes and locations of solar facilities in the SEZ; and on other projectand site-specific factors. At lower elevations, where there is a clear view of the SEZ, under the 80% development scenario analyzed in this PEIS, weak levels of visual contrast would be expected. Moderate levels of visual contrast might be observed from the highest elevations within the WA, such as Thumb Peak, the Flat Tops, and Palo Verde Peak.

- 10 *Rice Valley WA*—The 43,412-acre (176-km²) Rice Valley is a congressionally ٠ designated wilderness area located 0.5 mi (0.8 km) at the point of closest 11 12 approach north of the SEZ. The WA includes a portion of the broad, flat 13 plains of Rice Valley, the northwestern tip of the Big Maria Mountains, and a 14 system of small dunes rising 30 to 40 feet above the valley floor. The valley is part of a massive sand sheet that extends from Cadiz Valley through Ward 15 16 Valley. Camping, hiking, backpacking, hunting, and wildlife viewing are recreational activities in the wilderness area. According to BLM's 1990 17 18 Wilderness Report, the wilderness area provides expansive vistas, imparting 19 to the visitor a sense of vastness and desolation. The flatness of most of the 20 area provides miles of unrestricted views in all directions (BLM 1990).
- 22 Portions of the wilderness area within the 650-ft (198.1-m) SEZ viewshed 23 (approximately 35,792 acres [145 km²], or 82% of the total wilderness area 24 acreage) extend from the point of closest approach to approximately 9.9 mi (15.9 km) from the SEZ. Portions of the wilderness area within the 24.6-ft 25 (7.5-m) viewshed encompass approximately 871 acres (4 km²), or 2% of the 26 27 total wilderness area acreage. As noted above, the wilderness area includes a portion of the Big Maria Mountains, and the range forms the southern 28 29 boundary of the wilderness area. The large difference in visible area within 30 the wilderness area between the 650-ft (198.1-m) and the 24.6-ft (7.5-m) 31 viewsheds is due to inclusion in the SEZ of two hills located in the far 32 northeastern portion of the SEZ south of the wilderness area and the Big 33 Maria Mountains. If 650-ft (198.1-m) power towers were located at the peaks 34 of these hills, the upper portions of the power tower would project above the 35 bottoms of two gaps in the Big Maria Mountains such that they would be 36 visible from much of the Rice Valley WA. However, due to the steep slope of 37 the hills, it is extremely unlikely that power towers would ever be erected on the peaks of these hills. If power towers were located away from the peaks of 38 39 these hills, they would not be visible from points in the wilderness area north of the Big Maria Mountains. The rest of the analysis assumes that visibility of 40 solar facilities within the SEZ is limited to the southern slopes of the Big 41 42 Maria Mountains within the wilderness area. 43
- 44 With this assumption, solar energy facilities within the SEZ could potentially 45 be visible from a small area in the far southern portion of the wilderness area,

1

2

3

4

5

6

7

8

9

1	including peaks and south-facing slopes of certain mountains in the Big Maria
2	range.
3	
4	Figure 9.4.14.2-19 is a Google Earth visualization of the SEZ (highlighted in
5	orange) as seen from a peak in the Big Maria Mountains in the far southern
6	portion of the wilderness area. The viewpoint is approximately 1.4 mi
7	(2.3 km) from the northern border of the SEZ and elevated approximately
8	1,750 ft (533 m) above the valley floor at the closest point in the SEZ. The
9	view looks southward down the length of the eastern portion of the SEZ
10	toward the distant McCoy and Mule Mountains.
11	
12	The visualization suggests that from this elevated viewpoint and relatively
13	short distance to the SEZ, the SEZ would be too large to be encompassed in
14	one view, and viewers would need to turn their heads to scan across the whole
15	visible portion of the SEZ. Four clusters of power tower facility models are
16	visible; the closest model cluster is 4.2mi (6.8 km) from the viewpoint, and
17	the farthest model cluster is 14 mi (23 km) from the viewpoint (both distances
18	to center points of model clusters). The tops of solar collector/reflector arrays
19	in the closest parts of the SEZ would be visible, but the angle of view is low
20	enough that farther facilities would likely repeat the horizontal line of the
21	valley plain.
22	
23	Taller ancillary facilities, such as buildings, transmission structures, and
24	cooling towers, and plumes (if present) would likely be visible projecting
25	above the collector/reflector arrays, and their structural details could be
26	evident, at least for nearby facilities. The ancillary facilities could create form
27	and line contrasts with the strongly horizontal, regular, and repeating forms
28	and lines of the collector/reflector arrays. Color and texture contrasts would
29	also be likely, but their extent would depend on the materials and surface
30	treatments utilized in the facilities.
31	
32	If power towers were present within the SEZ, at short distances the receivers
33	would likely appear as very bright nonpoint sources of light atop clearly
34	discernable tower structures against the backdrop of the valley floor, while at
35	the longest distances visible here they would likely appear as distant points of
36	light below the southern horizon against the backdrop of the valley floor.
3/	
38	At night, if sufficiently tail, the power towers could have red or white flashing
39	hazard havigation lights that would likely be visible from the WA, and could
40	be very conspicuous from this viewpoint, given the dark night skies in the
41	vicinity of the SEZ. Other lighting associated with solar facilities in the SEZ
4 <i>2</i> 42	could potentially be visible as well, at least for facilities in the closest portions
45 44	of the SEZ.
44 15	The notential viewal contract evenented for this view -intervented down 1 4
40 46	ne potential visual contrast expected for this viewpoint would depend on the
40	numbers, types, sizes, and locations of solar facilities in the SEZ and on other

FIGURE 9.4.14.2-19 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from a Viewpoint in the Big Maria Mountains within the Rice Valley WA

1	project- and site-specific factors, but because the viewpoint is elevated and
2	relatively close to the SEZ, the SEZ would fill up much of the field of view.
3	While one or a few solar facilities within the SEZ might only give rise to
4	moderate levels of visual contrast, under the 80% development scenario
5	analyzed in this PEIS, there could be numerous solar facilities within the SEZ.
6	a variety of technologies employed and a range of supporting facilities that
° 7	would contribute to visual impacts, such as transmission towers and lines
8	substations power block components and roads. The lack of uniformity in
9	facility components could result in a visually complex landscape, yast in
10	scone but with low visual unity. This essentially industrial-appearing
11	landscape would contrast greatly with the surrounding natural-appearing lands
12	and would likely dominate the view from this location. Under the 80%
12	development scenario solar facilities within the SEZ would be expected to
14	create strong visual contrasts as viewed from this and similar locations on the
15	slopes or peaks of the Big Maria Mountains within the wilderness area
16	slopes of peaks of the Dig Maria Mountains within the winderness area.
17	Note that some locations within the Big Maria Mountains and within the
18	wilderness area also have partial views of the more distant proposed Iron
10	Mountain SEZ Overall under the 80% development scenario analyzed in this
20	PEIS solar energy development in the Iron Mountain SEZ would be expected
20	to result in much weaker visual impacts on the wilderness area than those
21 22	expected from development in the Riverside East SEZ, but where views of
22	both SEZs existed additional impacts to those described here would occur
25 24	boli SEZS existed, additional impacts to those described here would becar.
2 4 25 •	Sheenhole Valley $W4$ —The 195 002-acre (789-km ²) Sheenhole Valley is a
25	congressionally designated wilderness area located 12.3 mi (19.8 km) at the
20 27	point of closest approach northwest of the SEZ. The wilderness area includes
27 28	the Sheenhole Mountains the Calumet Mountains and the Sheenhole Valley. The
20	Sheepholes are a steen, boulder-strewn mountain range: the Calumets are similar
30	but much lower Camping hiking backpacking hunting and wildlife viewing
31	are recreational activities in the wilderness area
32	
33	The SEZ is visible from higher elevations in both the Sheephole and Calumet
34	Mountains Portions of the wilderness area within the 650-ft (198 1-m) SEZ
35	viewshed (approximately 2.733 acres [11 km ²] or 1.4% of the total
36	wilderness area acreage) extend from 14 4 mi (23.2 km) to approximately
37	22.6 mi (36.4 km) from the SEZ Portions of the wilderness area within the
38	24.6-ft (7.5-m) viewshed encompass approximately 625 acres (3 km ²) or 0.3%
39	of the total wilderness area acreage
40	
41	From the Sheephole Mountains, the far northwest portion of the SEZ is visible
42	beyond the Pinto Basin to the west of the Coxcomb Mountains. The Coxcomb
43	Mountains partially screen the view of the SEZ from the Sheephole
44	Mountains, and because the distance to the SEZ exceeds 15 mi (24 km) the
45	angle of view is low, so that the visible portion of the SEZ occupies a very
46	small portion of the field of view. Solar collector/reflector arrays within the
	1 J

1		SEZ visible from the Sheephole Mountains within the wilderness area would
2		be seen edge-on, reducing their apparent size and repeating the line of the
3		horizon, which would tend to reduce visual contrast. Power towers within the
4		SEZ could be visible as distant points of light on the southeast horizon,
5		against the backdrop of the Chuckwalla Valley floor. At night, if sufficiently
6		tall, the power towers could have red or white flashing hazard navigation
7		lights that could potentially be visible from this location. Expected visual
8		contrasts would be weak.
9		
10		From the Calumet Mountains sufficiently tall power towers in the northwest
11		portion of the SEZ east of the Coxcomb Mountains might just be visible over
12		the baiada of the Coxcomb Mountains. The mountains screen the view of the
12		SEZ from the Calumet Mountains, and because the distance to the SEZ
13		exceeds 19 mi (31 km) the angle of view is very low so only the upper
15		portions of tall power towers might be seen. Power towers within the SEZ
15		could be visible as distant points of light on the southeast horizon, appearing
10		iust above the bailed east of the Coveenth Mountains. Expected visual
17		aontrasts would be minimal
10		contrasts would be minimal.
19		Trice Mountaine WA The 20.046 care (122 km ²) Trice Mountaine is a
20	•	Trigo Mountains WA—The 50,046-acre (122-km ²) Trigo Mountains is a
21		congressionally designated wilderness area located in Arizona, 17.4 mi
22		(28.0 km) at the point of closest approach southeast of the SEZ. The
23		wilderness is characterized by sawtooth ridges and steep-sided canyons and is
24		heavily dissected by washes. Recreation such as extended horseback riding
25		and backpacking trips, sightseeing, hiking, and rock climbing are enhanced by
26		the topographic diversity, scenic character, as well as botanical, wildlife, and
27		cultural values (BLM 2010a).
28		
29		The Riverside East SEZ is visible from higher elevations throughout the Trigo
30		wilderness area. Although the closest points in the wilderness area are father
31		than 17 mi (27 km) from the SEZ, there are no intervening mountains to
32		screen views. Portions of the wilderness area within the 650-ft (198.1-m) SEZ
33		viewshed (approximately 3,512 acres [14.2 km ²], or 12% of the total
34		wilderness area acreage) extend from the point of nearest approach to beyond
35		25 mi (41 km) from the SEZ. Portions of the wilderness area within the 24.6-ft
36		(7.5-m) viewshed encompass approximately 2,517 acres (10 km ²), or 8% of
37		the total wilderness area acreage.
38		
39		Figure 9.4.14.2-20 is a Google Earth visualization of the SEZ as seen from an
40		unnamed peak in the northwestern portion of the wilderness area,
41		approximately 19 mi (31 km) from the far southeastern portion of the SEZ.
42		The visualization illustrates that despite the relatively long distance to the SEZ
43		from the Trigo Mountains WA, because of the open view and its large size.
44		the SEZ occupies a substantial portion of the horizontal field of view. Because
45		of the long distance, however, the angle of view is very low Solar
46		collector/reflector arrays within the SEZ visible from the wilderness area

FIGURE 9.4.14.2-20 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from a Viewpoint in the Trigo Mountains within the Trigo Mountains WA

would be seen edge-on, reducing their apparent size and repeating the line of the horizon, which would tend to reduce visual contrast. Power towers within the SEZ could be visible as distant points of light on the northwest horizon, against the backdrop of the Chuckwalla Valley floor or the mountain ranges north of the valley. At night, if sufficiently tall, the power towers could have red or white flashing hazard navigation lights that could be visible from the WA.

Visual contrasts associated with solar energy development within the SEZ would depend on the numbers, types, sizes and locations of solar facilities in the SEZ, and other project- and site-specific factors.. Where there was a clear view of the SEZ, under the 80% development scenario analyzed in this PEIS, weak levels of visual contrast would be expected. The highest contrast levels would be expected for peaks in the northern part of the WA, with lower contrasts expected for lower elevations and viewpoints in the southern part of the WA.

• *Turtle Mountains WA*—The 182,610-acre (739-km²) Turtle Mountains is a congressionally designated wilderness area located 17.0 mi (27.4 km) at the point of closest approach north of the SEZ. Above broad, open bajadas, the wilderness area's eroded volcanic peaks, spires, and cliffs in a range of colors constitute a diverse, scenic landscape, which includes the Turtle Mountains scenic ACEC and the Turtle Mountains National Natural Landmark. The wilderness area contains numerous trails. The wilderness area contains the Mopah Peaks, which are rhyodactic or volcanic plugs, and the northernmost peak in the wilderness area is a landmark known as Mexican Hat. Hiking, horseback riding, hunting, camping, rock hounding, photography, and backpacking are popular recreation activities in the wilderness area. Coffin, Mopah, and Mohawk Springs are popular hiking destinations. The Turtle Mountains WA includes most of the Turtle Mountains range, and a large portion of the Ward Valley floor to the northwest of the Turtle Mountains.

33 Small areas of the northeast section of the SEZ are visible from the south-34 facing slopes and peaks in the southern portion of the wilderness area beyond 35 Rice Valley through two gaps, one in the Big Maria Mountains and one 36 between the Big Maria and Little Maria Mountains. Portions of the wilderness 37 area within the 650-ft (198.1-m) viewshed (approximately 13,827 acres [56 km²], or 8% of the total wilderness area acreage) extend from the point of 38 39 nearest approach to beyond 25 mi (41 km) from the SEZ. Portions of the wilderness area within the 24.6-ft (7.5-m) viewshed encompass approximately 40 1,375 acres (6 km²), or 0.8% of the total wilderness area acreage. 41 42

The gaps through which the SEZ is visible from the wilderness area are
relatively narrow, so the visible portions of the SEZ are very small, especially
the eastern-most gap in the Big Maria Mountains. The distance from the SEZ
to visible areas within the wilderness area exceeds 17 mi (27 km), so solar

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15 16

17 18

19

20

21

22

23

24

25

26

27

28 29

30

31

1	collector/reflector arrays within the SEZ visible from the wilderness area
2	would be seen edge-on, reducing their apparent size and repeating the line of
3	the horizon, which would tend to reduce visual contrast. Power towers within
4	the SEZ could be visible as distant points of light within the gaps. At night, if
5	sufficiently tall, the power towers could have red or white flashing hazard
6	navigation lights that could be visible from the wilderness area.
7	
8	Visual contrasts associated with solar energy development within the SEZ
9	would depend on viewer location within the WA: solar facility type, size, and
10	location within the SEZ and other visibility factors. Where there was a clear
11	view of the SEZ under the 80% development scenario analyzed in this PEIS
12	weak levels of visual contrast would be expected
13	weak ievels of visual contrast would be expected.
14	
15	National Wildlife Refuges
16	
17	• Cibola NWR—The 18 398-acre (75-km^2) Cibola NWR is 9.8 mi (15.8 km)
18	south of the SEZ at the closest point of approach in the flood plain of the
10	lower Colorado River. The refuge is located immediately north of Imperial
20	NWR (see below). The refuge includes backwaters, seasonally flooded
20 21	croplands, two historic river meanders, and two small lakes. The refuge
21 22	includes low desert ridges and washes away from the river
22 73	includes low desert huges and washes away from the fiver.
23 24	The coutheastern partian of the SEZ is visible from most of the refuge
24 25	Approximately 17 121 earon (60 km ²) or 0.20 of the refuge in within the
23 26	Approximately 17,121 acres (09 km ²), of 95% of the fetuge, is within the $(50 \text{ ft} (109 \text{ 1 m}) viewshad of the SEZ and 16 296 acres (66 km2) or 900/ is$
20	0.50 - It (198.1-III) viewshed of the SEZ, and $10,500$ acres (00 km²), of $0.9%$, is
21	within the 24.0-ft (7.3-ff) viewshed. The portions of the fetuge within the
20	to the south arm hour damy of the refuge common impetative 22.1 mi (25.6 km) from
29	to the southern boundary of the refuge, approximately 22.1 mi (55.6 km) from
30 21	the SEZ.
21 22	The refuse is very flat, with relief in most of the refuse verying loss than 20 ft
22 22	The refuge is very flat, with refier in most of the refuge varying less than 20 ft (6 m) , except the for southern portions. Most of the refuge is lower in
22 21	(0 III), except the fai southern portions. Most of the refuge is lower in alaystical than the SEZ by 100 ft (20 m) or more, and the highest points in the
24 25	refuge are lower than the southeastern parties of the SEZ; hence the angle of
55 26	view between the refuge and the SEZ is very law. Some of the SEZ is
20 27	view between the refuge and the SEZ is very low. Some of the SEZ is
21 20	screened from view by the Paio verde Mountains. In addition, much of the refuge is beautify yeggeteted, and in some group of the refuge, views of the SEZ
20 20	refuge is neavily vegetated, and in some areas of the refuge, views of the SEZ
39 40	are likely screened by vegetation.
40 41	A my galan facilities within the CE7 within from the metric and 111
41 42	Any solar facilities within the SEZ visible from the refuge would be viewed at
42 42	very low angles. Solar collector/reflector arrays would be viewed edge-on,
45	tending to reduce apparent size and visual contrast. If power towers were
44	visible, they would likely appear as point light sources on the northern
45	norizon. At night, it sufficiently tall, the power towers could have red or white
46	flashing hazard navigation lights that could be visible from the refuge.

1	Visual contrasts associated with solar energy development within the SEZ	
2	would depend on viewer location within the NWR; solar facility type, size,	
3	and location within the SEZ; and other visibility factors. From the northern	
4	portions of the NWR, where there was a clear view of the SEZ, under the 8	0%
5	development scenario analyzed in this PEIS, weak levels of visual contrast	
6	would be expected. Contrast would be weaker from viewpoints in the south	lern
7	portions of the NWR, because the distance to the SEZ is greater.	
8		
9	• Imperial NWR—The 31,465-acre (127-km ²) Imperial NWR is approximate	ly
10	22.1 mi (35.6 km) at the closest point of approach south of the SEZ. The	5
11	refuge protects wildlife habitat along 30 mi (48.3 km) of the lower Colorad	0
12	River in Arizona and California including the last unchannelized section	-
13	before the river enters Mexico. The refuge includes low heavily vegetated	
14	land along the Colorado River as well as higher areas with less vegetation	n
15	hoth sides of the river	/11
16		
17	The far southeastern corner of the SEZ is visible from some areas within th	ρ
18	northern portion of the refuge Approximately 1.749 acres (7 km ²) or 6%	c vf
10	Imperial NW/P's total acreage is contained within the 650 ft (108.1 m)	/1
20	x_{1} with the set of the set	
20	viewshed of the SEZ, and 1,581 acres (0 km^2), of 470 of the refuge s total	
21	within the viewshed extend from the point of nearest approach at the portions	rn
22	hourdowy of the refuge to hours d 25 mi (41 km) from the SEZ	2111
23	boundary of the refuge to beyond 25 ml (41 km) from the SEZ.	
24		
25	Within 25 mi (41 km) of the SEZ, where vegetative screening is absent, sol	ar
26	facilities located in the far southeastern portions of the SEZ might be visible	e
27	from the highest points within the refuge. Because of the very long distance	e to
28	the SEZ and screening by the Palo Verde Mountains, visible portions of the)
29	SEZ would occupy a very small portion of the field of view. The refuge is a	at a
30	slightly lower elevation than the SEZ. Any visible solar facilities within the	;
31	SEZ would be viewed at very low angles. Solar collector/reflector arrays	
32	would be viewed edge-on and, at distance exceeding 22 mi (35 km), are	
33	unlikely to be distinguishable. If power towers were visible, they would lik	ely
34	appear as distant point light sources on the northern horizon. At night, if	
35	sufficiently tall, the power towers could have red or white flashing hazard	
36	navigation lights that could potentially be visible from the refuge. Visual	
37	impacts on the Imperial NWR from solar development within the SEZ wou	ld
38	be expected to be minimal.	
39		
40		
41	National Natural Landmarks	
42		
43	• <i>Turtle Mountains NNL</i> —The Turtle Mountains NNL comprises 50.057 acre	es
44	(202.57 km^2) designated for outstanding scenic values. located almost entit	elv
45	within the Turtle Mountains WA (see above) The Turtle Mountains NNL	,
46	encompasses the same lands as the Turtle Mountain Scenic ACEC	
-	1	

1 2	Visual impacts on the Turtle Mountains NNL associated with utility-scale solar energy development in the proposed Riverside East SEZ would be
3 4	similar to those described for the Turtle Mountains WA (see above).
5	
6	ACECs Designated for Outstanding Scenic Qualities
7	
8	• Corn Springs ACEC—The Corn Springs ACEC is a 2,463-acre (10-km ²)
9 10	of closest approach. The ACEC contains land in and around a canyon in the
11	Chuckwalla Mountains Wilderness. The ACEC was designated for its
12	prehistoric/historic values, outstanding scenery, wildlife habitat, and
13	vegetation, and the ACEC also contains petroglyphs. Corn Springs is also a
14	Cahuilla Indian sacred site. The Corn Springs Campground is located in the
15	canyon, situated by a stand of native California fan palms.
16	
17	Much of the SEZ is visible from the eastern portion of the SEZ outside Corn
18	Springs Canyon, and a very small portion of the SEZ is visible from within
19	the canyon. The area of the ACEC within the viewshed of the SEZ
20	encompasses 1,080 acres (4 km ²) in the 650-ft (198.1-m) viewshed, or 44%
21	of the total ACEC acreage. Portions of the ACEC within the 24.6-ft (7.5-m)
22	viewshed include approximately 941 acres (4 km ²), or 38% of the total ACEC
23	acreage. The portions of the ACEC within the viewshed extend from the point
24	of nearest approach to approximately 5.9 mi (9.5 km) from the SEZ.
25	The SEZ is lengely generated from view within the conventional faith each
26	The SEZ is largely screened from view within the canyon itself, although
27	there is a very limited view of the SEZ almost straight east from Corn Springs
28	Road as it crosses a slightly elevated bench in the western part of the canyon.
29 20	The view of the SEZ from this location is limited by screening from the
30 21	more than 20 mi (47 km) distant, and at such a low angle of view that visual
27	impacts from any solar facilities visible from that location would be expected
22 22	to be minimal
33 31	to be minimal.
35	Within the ACEC near the eastern mouth of the canyon where the canyon
36	outwash turns northward toward the Chuckwalla Valley, views of the SEZ
37	open up to the porth and east As Corn Springs Road crosses east of the wash
38	views open up even more as the Chuckwalla Mountains no longer screen
30	views of the western portion of the SEZ
40	views of the western portion of the SEZ.
41	Figure 9.4.14.2-21 is a Google Earth visualization of the SEZ as seen from
42	Corn Springs Road approximately 0.2 mi (0.4 km) north of the southern
43	boundary of the ACEC and 0.4 mi (0.7 km) from the eastern boundary of the
44	ACEC. The viewpoint is approximately 5 mi (8 km) south of the SEZ and is
45	elevated about 600 ft (180 m) over the closest portion of the SEZ and about
46	850 ft (260 m) over the valley floor. The visualization suggests that from this

FIGURE 9.4.14.2-21 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from a Viewpoint on Corn Springs Road within the Corn Springs ACEC

1 elevated viewpoint, the SEZ would be too large to be encompassed in one 2 view, and viewers would need to turn their heads to scan across the whole 3 SEZ. The entire Chuckwalla Valley visible from this location would present a 4 variety of solar facilities with associated transmission facilities and roads, 5 stretching across the valley floor to the base of the bajada of the Palen 6 Mountains and to the other mountain ranges north of the SEZ. The angle of 7 view is low enough, however, that the valley itself appears as a band across 8 the base of the mountains, so most of the development in the valley would be 9 viewed from a low oblique angle that would reduce the visible surface area 10 and associated visual impacts. 11 12 The tops of solar collector/reflector arrays in the closest parts of the SEZ 13 would likely be visible, but the angle of view is low enough that most 14 facilities would appear close to edge-on, appearing as a thin band that would 15 tend to repeat the line of the horizon. 16 Taller ancillary facilities, such as buildings, transmission structures, and 17 cooling towers, and plumes (if present) would likely be visible projecting 18 19 above the collector/reflector arrays, at least for nearby facilities, and their 20 structural details could be evident. The ancillary facilities could create form 21 and line contrasts with the strongly horizontal, regular, and repeating forms 22 and lines of the collector/reflector arrays. Color and texture contrasts would 23 also be likely, but their extent would depend on the materials and surface 24 treatments utilized in the facilities. 25 26 If power towers were present within the SEZ, closer receivers would likely 27 appear as bright points of light atop discernable tower structures against the backdrop of the valley floor or the bajada of the Palen Mountains. The tower 28 29 structures and power block facilities would likely be visible for projects close to the viewpoint, but receiver lights would be dimmer and ancillary facilities 30 31 more difficult to discern for projects farther from the viewpoint, as the 32 distance increased and the viewing angle decreased. 33 34 At night, if sufficiently tall, the power towers could have red or white flashing 35 hazard navigation lights that likely would be visible from this location in the 36 ACEC and could be very conspicuous, given the dark night skies in the 37 vicinity of the SEZ, although there would be lighting from I-10 and other sources visible as well. Other lighting associated with solar facilities in the 38 39 SEZ could potentially be visible as well, at least for facilities in the closest 40 portions of the SEZ. 41 42 The potential visual contrast expected for this viewpoint would vary 43 depending on the numbers, types, sizes, and locations of solar facilities in the 44 SEZ and on other project- and site-specific factors, but under the 80% 45 development scenario analyzed in this PEIS, solar facilities within the SEZ

1 2		would be expected to create strong visual contrasts as viewed from this location within the ACEC
3		
4		In summary, visual contrasts associated with solar energy development within
5		the SEZ would depend on viewer location within the ACEC; on solar facility
6		type, size, and location within the SEZ; and on other visibility factors. Inside
7		Corn Spring Canyon, visibility of solar facilities in the SEZ would be very
8		limited; views would be at very long distances; and expected contrast levels
9		would be minimal. Outside of the canyon at points on or along Corn Springs
10		Road, with a clear view of the SEZ, under the 80% development scenario
11		analyzed in this PEIS, strong levels of visual contrast would be expected.
12		
13	•	<i>Turtle Mountain ACEC</i> —The Turtle Mountains ACEC is a 50,057-acre
14		(203-km ²) BLM-designated ACEC located approximately 20.8 mi (33.5 km)
15		north of the SEZ at the point of closest approach. The ACEC encompasses the
16		Turtle Mountains NNL. The ACEC was designated for its scenic values.
17		č
18		The area of the ACEC within the 650-ft (198.1-m) viewshed of the SEZ
19		includes 2,355 acres (10 km ²), or 5% of the total ACEC acreage. The area
20		within the 24.6-ft (7.5-m) viewshed of the SEZ includes 856 acres (4 km ²), or
21		2% of the total ACEC acreage. The visible portions of the ACEC extend from
22		the point of closest approach to beyond 25 mi (41 km) from the SEZ.
23		
24	•	Visual impacts on the Turtle Mountains ACEC associated with utility-scale
25		solar energy development in the proposed Riverside East SEZ would be
26		similar to those described for the Turtle Mountains WA (see above).
27		
28		
29	Scenic Hi	ghways/Byways
30		
31	•	Bradshaw Trail—The Bradshaw Trail is a BLM Backcountry Byway that runs
32		parallel to the southern boundary of the SEZ. The trail traverses mostly public
33		land between the Chuckwalla Mountains and the Chocolate Mountain Aerial
34		Gunnery Range, with spectacular views of the Chuckwalla Bench, Orocopia
35		Mountains, Chuckwalla Mountains and the Palo Verde Valley. It is currently
36		unpaved, and is accessible with four-wheel drive vehicles.
37		
38		Approximately 23 mi (37.0 km) of the trail is within the calculated 650-ft
39		(198.1-m) viewshed of the SEZ. Near the southeastern corner of the SEZ, the
40		Bradshaw Trail passes within 1.7 mi (2.8 km) of the SEZ and parallels the
41		SEZ at roughly that distance for a little more than 6 mi (10 km); however,
42		views of the SEZ from the trail would be screened by the Mule Mountains for
43		most of that distance. As the trail heads west, it veers slightly south to pass to
44		the south of the Little Chuckwalla Mountains and after about 15 additional mi
45		(24 km) passes out of the SEZ 650-ft (198.1-m) viewshed.
46		

1	The trail climbs steadily as it runs west, from an elevation of about 240 ft
2	(/3.2 m) above mean seal level near the southeast corner of the SEZ to about
3	1,240 ft (3/8 m) above mean sea level at the point it passes out of the SEZ
4	viewsned. For that portion of the trail closest to the SEZ, the trail is at a
5	slightly lower elevation, which would ensure a very low angle of view to the
6	SEZ.
7	
8	Figure 9.4.14.2-22 is a Google Earth perspective visualization of the SEZ as
9	seen from the Bradshaw Trail 1.7 mi (2.8 km) south of the southeast corner of
10	the SEZ. The viewpoint is roughly 20 ft (6 m) lower in elevation than the SEZ
11	in the vicinity. The view direction is north.
12	
13	In the visualization, the SEZ and very distant heliostat arrays depicted in the
14	power tower model cluster appear edge-on, as a very narrow band parallel to,
15	and repeating, the strong horizon line. The very low angle of view would
16	greatly reduce the visible area of solar collector/reflector arrays, conceal their
17	strong regular geometry, and thus reduces associated visual contrast. The
18	model cluster at center right is approximately 18 mi (29 km) from the
19	viewpoint; however, if solar facilities were closer to the viewpoint, they
20	would cause greater levels of visual contrast, and if they were close to the
21	southeastern corner of the SEZ, they could potentially give rise to moderate to
22	strong visual contrasts.
23	
24	If power towers were present within the SEZ, at the distance shown here, the
25	receivers could appear as distant point light sources against the backdrop of
26	the Big Maria Mountains. Transmission towers could be visible above the
27	solar collector/reflector arrays. Receivers on closer power towers could be
28	much brighter.
29	
30	At night, if sufficiently tall, the power towers could have red or white flashing
31	hazard navigation lights that would likely be visible from the Trail and could
32	be very conspicuous from this viewpoint, given the dark night skies in the
33	vicinity of the SEZ and the short distance to the SEZ. Other lighting
34	associated with solar facilities in the SEZ could potentially be visible as well,
35	at least for facilities in the closest portions of the SEZ.
36	-
37	The potential visual contrast expected for this viewpoint would depend on the
38	numbers, types, sizes, and locations of solar facilities in the SEZ and on other
39	project- and site-specific factors. Under the 80% development scenario, solar
40	facilities within the SEZ would be expected to create weak to moderate visual
41	contrasts as viewed from this location on the trail.
42	
43	On average, eastbound travelers on the Bradshaw Trail would be more likely
44	to experience visual impacts from solar energy development in the SEZ than

FIGURE 9.4.14.2-22 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from the Bradshaw Trail near the Southeast Corner of the SEZ

1	westbound travelers. As eastbound travelers approached the SEZ, they would
2	be at a higher elevation than the SEZ and so would see more of the SEZ and
3	solar facilities within it, but they would also have more extended views of the
4	SEZ as they descended the trail. Westbound travelers would be facing away
5	from the SEZ as they climbed the trail behind the Little Chuckwalla
6	Mountains.
7	
8	Figure 9.4.14.2-23 is a Google Earth perspective visualization of the SEZ as it
9	would be seen by eastbound travelers on the Bradshaw Trail 5.7 mi (9.2 km)
10	southwest of the SEZ at the western edge of the Mule Mountains. The
11	viewpoint is roughly 240 ft (73 m) higher in elevation than the SEZ is in the
12	direction of travel. The view direction is northeast
13	
14	In the visualization the SEZ and very distant heliostat arrays depicted in the
15	power tower model cluster appear edge-on as a very narrow band parallel to
16	and repeating the strong horizon line and thus greatly reducing their visible
17	area and associated visual contrast. The model cluster at center right is
18	approximately 9 mi (14 km) from the viewpoint
19	upproximatery 5 mi (1 + km) from the viewpoint.
20	If nower towers were present within the SEZ at the distance shown here, the
20	receivers could appear as bright point light sources aton discernable tower
21	structures against the backdron of the Big Maria Mountains or the sky
22	Transmission towers could be visible above the solar collector/reflector
23	
25	anays.
25	At night if sufficiently tall, the power towers could have red or white flashing
20	hazard navigation lights that could be visible from this location. Other lighting
28	associated with solar facilities in the SEZ could notentially be visible as well
20	at least for facilities in the closest portions of the SEZ
30	at least for facilities in the crosest portions of the SLZ.
31	The notential visual contrast expected for this viewpoint would depend on the
32	numbers types sizes and locations of solar facilities in the SEZ and other
33	project, and site-specific factors. Under the 80% development scenario solar
34	facilities within the SEZ would be expected to create moderate visual
35	contrasts as viewed from this location on the trail
36	contrasts as viewed from this location of the traff.
30	In summery visual contracts associated with solar energy development within
28	the SEZ would depend on viewer location on the Bradshaw Trail: on solar
30	facility type, size, and location within the SEZ; and on other visibility factors
<i>J J J J J J J J J J</i>	On much of the trail visibility of solar facilities in the SEZ would be very
40	limited: views would be at long distances; and expected contrast levels would
41	ha minimal Hawayar under the 200/ development according and the third
42 42	DE Infinitial. Flowever, under the 80% development scenario analyzed in this
45 44	r E15, moderate of strong levels of visual contrast would be expected for some
44	the SET. In general because of view direction and hearting settle
45	the SEZ. In general, because of view direction and duration, eastbound
40	

FIGURE 9.4.14.2-23 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from the Bradshaw Trail near the Mule Mountains

9.4-285

travelers on the trail would be subject to higher contrast levels than westbound travelers.

Additional scenic resources exist at the national, state, and local levels, and impacts may occur on both federal and nonfederal lands, including sensitive traditional cultural properties important to Tribes. Note that in addition to the resource types and specific resources analyzed in this PEIS, future site-specific NEPA analyses would include state and local parks, recreation areas, other sensitive visual resources, and communities close enough to the proposed project to be affected by visual impacts. Selected other lands and resources are included in the discussion below.

11

1

2

3

12 In addition to impacts associated with the solar energy facilities themselves, sensitive 13 visual resources could be affected by facilities that would be built and operated in conjunction with the solar facilities. With respect to visual impacts, the most important associated facilities 14 would be access roads and transmission lines, the precise location of which cannot be 15 16 determined until a specific solar energy project is proposed. Currently, a 500-kV, a 230-kV, and 17 a 69-kV transmission line are within the proposed SEZ. For this analysis, the impacts of construction and operation of transmission lines outside of the SEZ were not assessed, assuming 18 19 that the existing transmission lines might be used to connect some new solar facilities to load 20 centers and that additional project-specific analysis would be performed for new transmission 21 construction or line upgrades. Note that depending on project- and site-specific conditions, visual 22 impacts associated with access roads, and particularly transmission lines, could be large. 23 Detailed information about visual impacts associated with transmission lines is presented in 24 Section 5.12.1. 5. A detailed site-specific NEPA analysis would be required to determine 25 visibility and associated impacts precisely for any future solar projects, based on more precise 26 knowledge of facility location and characteristics. 27

28

29 30

Impacts on Selected Other Lands and Resources

31

32 Interstate 10. I-10 passes through the SEZ for a distance of approximately 4.0 mi (6.4 km), abuts the southern boundary of the SEZ for an additional 1.7 mi (2.7 km), and is within 33 34 0.67 mi (1.1 km) of the SEZ for an additional 34 mi (55 km). As shown in Figure 9.4.14.2-2, 35 approximately 79 mi (127 km) of I-10 is within the 650-ft (198.1-m) viewshed of the Riverside 36 East SEZ. I-40 intersects the SEZ in five separate areas, ranging in length from approximately 37 0.04 to 3 mi (0.06 to 4.8 km). Undulations in topography as well as buildings screen views of 38 portions of the SEZ from some locations along I-10; however, there are generally open views 39 of the SEZ from I-10 throughout the viewshed.

40

For westbound travelers on I-10, solar facilities within the SEZ would likely come into view just past a pass in the Dome Rock Mountains, about 8.5 mi (13.6 km) east of Ehrenberg, about 34 mi (55 km) from the eastern boundary of the SEZ. At that distance, the SEZ would occupy a substantial portion of the horizontal field of view directly from the Interstate; however, because of the distance, visual contrasts would likely be weak. As travelers descend the foothills of the Dome Rock Mountains, the road passes through several dips that might partially conceal some facilities within the SEZ briefly, but some part of the SEZ would be in nearly continuous view, with visual contrasts due to solar facilities within the SEZ gradually increasing as the distance to the SEZ decreased and the apparent height and width of the solar facilities increased. In about 15 to 20 minutes after first coming into view, the SEZ would occupy much of the northwestern horizon north of I-10. The viewing angle would be low and would decrease as travelers approach the Colorado River Valley, so that the SEZ and associated solar development would appear as a thin band just under the Chuckwalla and McCoy Mountains.

8

9 As travelers pass through the Palo Verde Valley, their elevation would drop below that 10 of the SEZ, and eventually, the western slope of the valley that climbs to the Palo Verde Mesa would gradually cut off views of the SEZ and associated solar facilities. By the time travelers 11 reach State Route 78, except for a view of the far northeast corner of the SEZ straight north, the 12 13 SEZ would be cut off entirely from view. Less than 1 mi (1.6 km) west of State Route78, the 14 elevation climbs again rapidly, and the SEZ would again become visible, but much closer, with stronger contrast levels. At Blythe Airport, another ridge would cut off views of the SEZ, and 15 16 after travelers cross this ridge to the Palo Verde Mesa, the SEZ would again come back into view, at this point filling the view to the west and north and likely dominating the view at 1 mi 17 18 (1.6 km) from the eastern boundary of the SEZ. At night, if there were hazard navigation lights 19 on sufficiently tall power towers, depending on their location within the SEZ, they could be 20 visible to travelers on I-10 approaching the SEZ, gradually increasing in brightness and height 21 above the horizon, and potentially becoming very conspicuous in the night sky as travelers 22 approached the SEZ closely.

23

24 Figure 9.4.14.2-24 is a Google Earth perspective visualization of the SEZ as seen from I-10, approximately 7.4 mi (11.9 km) east of the intersection of I-10 and the SEZ, just west of 25 Blythe and facing west toward the SEZ. The visualization suggests that from this location, the 26 27 SEZ would occupy much of the horizontal field of view, but because the viewing angle is very 28 low, small undulations in topography might screen views of lower height solar facilities away 29 from the roadways, and visible facilities would be seen edge-on, which would tend to reduce 30 visual contrasts. If power tower facilities were present within the SEZ, the receivers of power 31 towers in the far eastern portion of the SEZ could appear as very bright points of light atop 32 visible tower structures on the western horizon, against a sky or mountain backdrop. These 33 bright light sources could potentially interfere with views of the distant mountains. 34

35 Figure 9.4.14.2-25 is a Google Earth perspective visualization of the SEZ as seen from 36 I-10, approximately 0.7 mi (1 km) east of the intersection of the highway and the SEZ, facing 37 southwest toward two power tower models just south of I-10. The closest tower is approximately 38 1.6 mi (2.5 km) from the viewpoint. The visualization suggests that from this location, solar 39 facilities within the SEZ would be in full view. The SEZ would occupy more than the entire field 40 of view, so travelers would have to turn their heads to scan across the full SEZ. Facilities located within the far eastern portion of the SEZ could strongly attract the eye and likely dominate views 41 42 from I-10.

43

Taller ancillary facilities, such as buildings, transmission structures, and cooling towers,
and plumes (if present) would likely be visible projecting above the collector/reflector arrays,
and their structural details could be evident, at least for nearby facilities. The ancillary facilities

FIGURE 9.4.14.2-24 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from I-10 Approximately 7.4 mi (11.9 km) East of the SEZ

FIGURE 9.4.14.2-25 Google Earth Visualization of the Proposed Riverside East SEZ (shown in orange tint) and Surrounding Lands, with Power Tower Wireframe Models, as Seen from I-10 Approximately 0.7 mi (1 km) East of the SEZ

1

1 could create form and line contrasts with the strongly horizontal, regular, and repeating forms 2 and lines of the collector/reflector arrays. Color and texture contrasts also would be likely, but 3 their extent would depend on the materials and surface treatments utilized in the facilities. Steam 4 plumes, transmission towers, and other tall facility components likely would project above the 5 mountains. From this viewpoint, solar collector/reflector arrays would be seen nearly edge-on 6 and would repeat the horizontal line of the plain in which the SEZ is situated; this would reduce 7 their apparent size and conceal the strong regular geometry of the arrays, tending to reduce visual 8 contrast, but as the viewer approached the SEZ, the collector/reflector arrays could increase in 9 apparent size until their individual forms became plainly visible, and they no longer appeared as 10 horizontal lines against the natural-appearing backdrop. 11

Views of the Chuckwalla Valley and the mountain ranges on either side of the valley could be partially screened by solar facilities, depending on the layout of solar facilities within the SEZ. Because of the potentially very short distance of solar facilities from I-10, strong visual contrasts likely would result, depending on solar project characteristics and location within the SEZ.

18 Visual contrast would increase further after travelers on I-10 entered the SEZ. If power 19 tower facilities were located in the SEZ, the receivers could appear as brilliant light sources on 20 either side of the highway and would likely strongly attract views. For nearby power towers, 21 during certain times of the day from certain angles, sunlight on dust particles in the air might 22 result in the appearance of light streaming down from the tower(s). At night, if sufficiently tall, 23 the power towers could have red or white flashing hazard navigation lights that would likely be very conspicuous from I-10. Other lighting associated with solar facilities in the SEZ could 24 25 potentially be visible as well, at least for facilities in the closest portions of the SEZ. Ahead, 26 down the roadway, if solar facilities were located on both the north and south sides of I-10, the 27 banks of solar collectors/reflectors on both sides could form a visual "tunnel," which travelers 28 would pass through briefly. If solar facilities were located close to the roadway, given the 80% 29 development scenario analyzed in this PEIS, they would be expected to dominate views from 30 I-10 and would create strong visual contrasts. After travelers pass through the section of SEZ, the 31 SEZ would still be very close to I-10 on one or the other side of the highway. Impact levels 32 would be dependent on the presence of solar facilities in areas near the roadway and on solar 33 facility characteristics.

34

Travelers heading east on I-10 would in general be subjected to the same types of visual contrasts, but the order would be reversed, and this could change the perceived impact levels. Because of differences in topography between the eastern and western approaches to the SEZ, more of the SEZ would be visible for longer distances for eastbound travelers. Solar facilities within the SEZ could be visible as far as Chiriaco Summit (18 mi [29 km] west of the SEZ), with power tower receivers appearing as distant lights on the eastern horizon at that distance.

41

From Chiriaco Summit eastward, except for brief periods, travelers would have continuous visibility of solar facilities within some part of the SEZ as they approach it. Solar facilities within the SEZ would gradually increase in apparent size, with the view opening up substantially (and visual contrast levels rising accordingly) as travelers approach Desert Center.

Draft Solar PEIS

Visual dominance of the solar facilities within the SEZ would increase steadily until peaking
 when travelers entered and passed through the SEZ.

3

In summary, visual contrasts associated with solar energy development within the SEZ would depend on viewer location on I-10; on solar facility type, size, and location within the SEZ; and on other visibility factors. The SEZ would be visible at long distances on I-10 for both eastbound and westbound travelers, although westbound travelers would have intermittent visibility of the SEZ because of periodic screening. However, under the 80% development scenario analyzed in this PEIS, strong levels of visual contrast would be expected as travelers in both directions approached and passed through the SEZ.

11

12

State Route 177. State Route 177 passes through or is immediately adjacent to the SEZ for a distance of approximately 8.4 mi (13.5 km). As shown in Figure 9.4.14.2-2, approximately 27 mi (43 km) of State Route 177 is within the 650-ft (198.1-m) viewshed of the Riverside East SEZ. State Route 177 intersects the SEZ in two separate areas in lengths of approximately 3 mi (4.8 km) and 5.4 mi (8.7 km). Undulations in topography as well as buildings may screen views of portions of the SEZ from some locations along the route; however, there are generally open views of the SEZ from State Route 177 throughout the viewshed.

Moving northward on State Route 177 from Desert Center, travelers would immediately enter the SEZ, after having experienced in some degree the impacts described above for I-10. Under the 80% development scenario analyzed in this PEIS, visual contrasts from solar energy development within the SEZ could potentially cause strong visual contrasts for travelers on State Route 177 and would likely dominate the view from some locations on State Route 177.

26

Between Desert Center and the northern boundary of the SEZ, where State Route 177 is not actually within the SEZ itself, it is not more than 1 mi (1.6 km) from the SEZ. In these areas, visual contrasts might be somewhat lower than those experienced within the SEZ itself, but because the distance to the SEZ is so short, visual contrasts could still be strong and solar development within the SEZ could dominate views from State Route 177.

Both within and near the SEZ, for travelers on State Route 177, solar collector/reflector arrays for solar facilities within the SEZ would be seen nearly edge-on. This would reduce their apparent size, conceal their strong regular geometry, and cause them to repeat the horizontal line of the plain in which the SEZ is situated; this would tend to reduce visual contrast. However, as the viewer passes through the SEZ, the collector/reflector arrays could increase in apparent size until they no longer appear as horizontal lines against the natural-appearing backdrop.

Taller ancillary facilities, such as buildings, transmission structures, and cooling towers,
and plumes (if present) likely would be visible projecting above the collector/reflector arrays,
and their structural details could be evident, at least for nearby facilities. The ancillary facilities
could create form and line contrasts with the strongly horizontal, regular, and repeating forms
and lines of the collector/reflector arrays. Color and texture contrasts would also be likely, but
their extent would depend on the materials and surface treatments utilized in the facilities.

1 If power tower facilities were located in the SEZ, the receivers could appear as brilliant 2 light sources on either side of the highway. They could project above nearby mountains, be 3 visible against a sky backdrop, and likely strongly attract views. For nearby power towers, 4 during certain times of the day from certain angles, sunlight on dust particles in the air might 5 result in the appearance of light streaming down from the tower(s). Steam plumes, transmission 6 towers, and other tall facility components could also project above the mountains.

8 At night, if sufficiently tall, the power towers could have red or white flashing hazard 9 navigation lights that likely would be very conspicuous from I-10. Other lighting associated with 10 solar facilities in the SEZ could potentially be visible as well, at least for facilities in the closest 11 portions of the SEZ.

State Route 177 travelers heading south from the Palen Valley would in general be subjected to the same types of visual contrasts, but the order would be reversed, and this could change the perceived impact levels. The SEZ would come into view about 9 mi (14 km) north of the SEZ, shortly after crossing Granite Pass, and the SEZ (and solar development within the SEZ) would be visible for approximate 7 to 9 minutes, gradually increasing in size, until travelers enter the SEZ itself.

19 20

12

Communities of Blythe, East Blythe, Palo Verde, Ripley, Cibola (Arizona) and Desert Center. The viewshed analyses indicate visibility of the SEZ from the communities of Blythe
(approximately 8.3 mi [13.4 km] east of the SEZ); East Blythe (approximately 9.6 mi [15.5 km]
east of the SEZ); Ehrenberg (approximately 13 mi [21 km] east of the SEZ); Palo Verde
(approximately 5.8 mi [9.3 km] south of the SEZ); Ripley (approximately 4.5 mi [7.2 km] east of
the SEZ); Cibola, located in Arizona (approximately 15 mi [24 km] southwest of the SEZ); and
Desert Center (adjacent to the southwest boundary of the SEZ).

28

29 Blythe, East Blythe, Ehrenberg, Palo Verde, Ripley, and Cibola are all communities in 30 or very close to the Palo Verde Valley east of the SEZ. The elevations in Blythe, East Blythe, 31 Ehrenberg, Palo Verde, Ripley, and Cibola range from 233 to 276 ft (71 to 84 m), and all these 32 communities are more than 100 ft (30 m) lower in elevation than the eastern border the SEZ. 33 Thus, there is a low angle of view between these communities and the SEZ; this would tend to 34 reduce the visibility of solar facilities within the SEZ and would therefore reduce associated 35 impacts. Desert Center is located at the far southwestern corner of the SEZ off I-10. Desert Center (approximate elevation 905 ft [276 m] above mean sea level) is at a slightly higher 36 elevation than most portions of the SEZ immediately adjacent to it, and is several hundred feet 37 38 higher than the lowest points nearby in the SEZ.

39

Screening by small undulations in topography, vegetation, buildings, or other structures would likely restrict or eliminate visibility of the SEZ and associated solar facilities within these communities, but a detailed future site-specific NEPA analysis is required to determine visibility precisely. However, note that even with existing screening, solar power towers, cooling towers, plumes, transmission lines and towers, or other tall structures associated with the development could potentially be tall enough to exceed the height of screening in some areas and could

46 therefore cause visual impacts on these communities.

1 The western-most portions of Blythe are slightly less than 5 mi (8 km) from the closest 2 point on the eastern boundary of the SEZ. In general, absent screening by nearby structures or 3 vegetation, Blythe and East Blythe have unobstructed views of the SEZ, which would occupy 4 much of the western horizon visible from these communities. However, the angle of view is low, 5 so that if solar facilities were visible within the SEZ, they would be viewed edge-on and would 6 repeat the line of the horizon, tending to reduce visual contrast. The light from power tower 7 receivers within the eastern-most portions of the SEZ would likely appear as very bright 8 nonpoint (i.e., having a visible cylindrical or rectangular surface) sources of light atop 9 discernable tower structures on the western horizon.

10

At night, if sufficiently tall, the power towers could have red or white flashing hazard navigation lights that likely would be visible from these communities and could be conspicuous from some location, given the dark night skies in the vicinity of the SEZ. Other lighting associated with solar facilities in the SEZ could potentially be visible from some locations as well, at least for facilities in the closest portions of the SEZ.

16

Visual contrasts associated with solar facilities within the SEZ would vary greatly,
depending on the presence of screening by nearby structures and vegetation and on project
locations, technologies, and site designs within the SEZ, but where there were unobstructed
views, these contrasts would be expected to be moderate to strong. In general, contrasts would be
expected to be greatest for locations on the western side of Blythe, with lesser contrast levels in
eastern Blythe and the community of East Blythe.

23

The community of Ehrenberg is located approximately 4 mi (6 km) east of Blythe, at the same elevation as Blythe. Ehrenberg would have essentially the same view of solar development within the SEZ as Blythe, but lower visual contrast levels would be expected in Ehrenberg because of the increased distance to the SEZ. Where there were unobstructed views, contrast levels would be expected to be weak to moderate.

30 The community of Ripley is located approximately 7 mi (11 km) southwest of Blythe, 31 and between 4 to 5 mi (6 to 8 km) from the far southeastern boundary of the SEZ. In general, 32 absent screening by nearby structures or vegetation, Ripley has unobstructed views of the SEZ, 33 which would occupy much of the northwestern horizon visible from Ripley. However, the angle 34 of view is low, so that if solar facilities were visible within the SEZ, they would be viewed edge-35 on and would repeat the line of the horizon, tending to reduce visual contrast. The light from 36 power tower receivers within the far southeastern portion of the SEZ would likely appear as very 37 bright nonpoint sources of light to the northwest and could appear silhouetted against the sky 38 looking west down the Chuckwalla Valley. At night, if sufficiently tall, the power towers could 39 have red or white flashing hazard navigation lights that likely would be visible from Ripley and 40 could be conspicuous. Other lighting associated with solar facilities in the SEZ could potentially be visible from some locations as well, at least for facilities in the closest portions of the SEZ. 41 42

Visual contrasts associated with solar facilities within the SEZ would vary greatly
depending on the presence of screening by nearby structures and vegetation and on project
locations, technologies, and site designs within the SEZ, but where there were unobstructed
views, contrasts would be expected to be moderate to strong.

1 The community of Palo Verde is approximately 6 mi (10 km) south of the far 2 southeastern corner of the SEZ. The Mule and Little Chuckwalla Mountains screen views of 3 most of the western parts of the SEZ from Palo Verde; however, much of the southeastern 4 portion of the SEZ would be visible on the northern horizon. The angle of view is low, so that if 5 solar facilities were visible within the SEZ, they would be viewed edge-on and would repeat the 6 line of the horizon, tending to reduce visual contrast. The light from power tower receivers 7 within the far southeastern portions of the SEZ could appear as bright point or nonpoint sources 8 of light on the northern horizon. Power towers with hazard lighting could be visible at night and 9 could be conspicuous depending on project location and other visibility factors. Visual contrasts 10 associated with solar facilities within the SEZ would vary greatly depending on the numbers, types, sizes, and locations of solar facilities in the SEZ and on other project- and site-specific 11 12 factors, but where there were unobstructed views, contrasts would be expected to be weak to 13 moderate. 14

15 The community of Cibola in Arizona is approximately 21 mi (34 km) south of Blythe and 16 approximately 15 mi (24 km) from the far southeastern corner of the SEZ. The Mule and Little Chuckwalla Mountains screen views of most of the western parts of the SEZ from Cibola; 17 18 however, portions of the southeastern portion of the SEZ would be visible on the northern 19 horizon. The angle of view is low, so that if solar facilities were visible within the SEZ, they 20 would be viewed edge-on and would repeat the line of the horizon, tending to reduce visual 21 contrast. The light from power tower receivers within the far southeastern portion of the SEZ 22 would likely appear as very distant point sources of light on the northern horizon. Visual 23 contrasts associated with solar facilities within the SEZ would depend on the numbers, types, 24 sizes, and locations of solar facilities in the SEZ and on other project- and site-specific factors, 25 but where there were unobstructed views, contrasts would be expected to be weak.

26

The community of Desert Center and the Lake Tamarisk housing development are located immediately adjacent to the far southwest corner of the SEZ. Desert Center is located at the Rice Rd (State Route 177) interchange on I-10, and Lake Tamarisk is less than 2 mi (3 km) north of Desert Center. In general, absent screening by nearby structures or vegetation, Desert Center and Lake Tamarisk have unobstructed views of the SEZ, which in the case of Desert Center would surround the community in all directions except south (across I-10) and in the case of Lake Tamarisk would surround the community in all directions except west.

34

35 From Desert Center and Lake Tamarisk, the SEZ could not be encompassed in one view, 36 and viewers would need to turn their heads to scan across the whole SEZ. Solar facility 37 collector/reflector arrays would be viewed nearly edge-on, reducing the visible area for each 38 facility and presenting a banded appearance that would repeat the line of the horizon, tending to 39 reduce visual contrast. If nearby facilities used PV systems and low-profile ancillary facilities, 40 the visual impacts would be lessened, but for facilities utilizing STGs, taller structures projecting above the collector/reflector arrays would be visible, and in some conditions steam plumes could 41 42 be present that would add significantly to visual contrasts. These taller elements would add 43 vertical line and form contrasts, and likely color contrasts as well; steam plumes would add color 44 and possibly line or form contrasts, depending on conditions. Depending on height, these 45 ancillary facilities could add significantly to visual contrasts for some facilities. For all projects, 46 transmission towers, lines, and substations might be visible, which could add substantially to

form and line contrasts. Structural details of collectors and ancillary facilities (buildings, STGs,
 substations, and so on) could be visible within nearby facilities. The tops of solar

- 3 collector/reflector arrays in the closest parts of the SEZ would not likely be visible, but because
- 4 the ground slopes downward to the east and north of Desert Center and Lake Tamarisk, the tops
- 5 of collector/reflector arrays could be visible for facilities farther way, and this would increase
- 6 chances of reflections from collector/reflector arrays, thermal tubes, and other facilities,
- 7 depending on facility design, location, distance, and other visibility factors. If power towers were
- 8 present within the SEZ, nearby receivers would likely appear as brilliant nonpoint (i.e., having
- 9 visible cylindrical or rectangular surfaces) light sources atop clearly discernable tower structures

against the backdrop of the sky above the surrounding mountains or against the mountain slopes,
 which could potentially cause discomfort when looked at directly. More distant receivers would

- likely appear as points of light against the sky, against the backdrop of the valley floor, or againstthe bajadas and slopes of the nearby mountains.
- 14

At night, if sufficiently tall, the power towers could have red or white flashing hazard navigation lights that would likely be visible from Desert Center and Lake Tamarisk and could be very conspicuous from these communities, given the dark night skies in the vicinity of the SEZ, although other lights would be visible in the vicinity. Other lighting associated with solar facilities in the SEZ could potentially be visible as well, at least for facilities in the closest portions of the SEZ.

21

22 The potential visual contrast expected for these communities would depend on the 23 numbers, types, sizes, and locations of solar facilities in the SEZ and on other project- and site-24 specific factors, but because Desert Center and Lake Tamarisk are adjacent to the SEZ, the SEZ 25 would be seen in close proximity in most directions, and under the 80% development scenario analyzed in this PEIS, solar facilities within the SEZ would likely dominate views from these 26 27 communities. Because there could be numerous solar facilities within the SEZ, a variety of 28 technologies employed, and a range of supporting facilities that would contribute to visual 29 impacts, a visually complex, man-made appearing industrial landscape could result. This 30 essentially industrial-appearing landscape would contrast greatly with the surrounding natural-31 appearing lands and would be expected to create strong visual contrasts as viewed from Desert 32 Center and Lake Tamarisk.

33

Regardless of visibility from within these communities, residents, workers, and visitors to the area would be likely to experience visual impacts from solar energy facilities located within the SEZ (as well as any associated access roads and transmission lines) as they travel area roads, including I-10 and State Route 177.

38 39

Nearby Residents. As noted above, there are scattered ranches and other residences on
 private lands immediately adjacent or close to the SEZ and elsewhere within the SEZ viewshed.
 Depending on technology- and project-specific factors, because of the proximity and large size
 of likely facilities, these residents could be subjected to large visual impacts from solar energy
 development within the SEZ. These impacts would be determined in the course of a site-specific
 environmental impact analysis.

9.4.14.2.3 Summary of Visual Resource Impacts for the Proposed Riverside East SEZ

3 Because there could be numerous solar facilities within the SEZ, a variety of technologies 4 employed, and a range of supporting facilities that would contribute to visual impacts, a visually 5 complex, man-made appearing industrial landscape could result. This essentially industrial-6 appearing landscape would contrast greatly with the surrounding generally natural-appearing 7 lands. Large visual impacts on the SEZ and surrounding lands within the SEZ viewshed would 8 be associated with solar energy development due to major modification of the character of the 9 existing landscape. There is the potential for additional impacts from construction and operation 10 of transmission lines and access roads within the SEZ.

11

1

2

12 Residents, workers, and visitors to the area may experience visual impacts from solar 13 energy facilities located within the SEZ (as well as any associated access roads and transmission lines) as they travel area roads. Nearby residents could be subjected to strong visual contrasts 14 from solar energy development within the SEZ. The communities of Blythe, East Blythe, 15 16 Ehrenberg, Palo Verde, Ripley, Cibola (Arizona), and Desert Center (including the Lake 17 Tamarisk development) are located within the viewshed of the SEZ, although slight variations in 18 topography and vegetation provide some screening. Strong visual contrasts may be observed 19 within Desert Center and Lake Tamarisk. Moderate to strong visual contrasts may be observed 20 within Blythe, East Blythe, and Ripley. Weak to moderate visual contrasts may be observed 21 within Ehrenberg and Palo Verde.

22

Utility-scale solar energy development within the proposed Riverside East SEZ is likely
to cause moderate to strong visual impacts on highly sensitive visual resource areas, including
Joshua Tree NP and WA, the Big Maria Mountains WA, Chuckwalla Mountains WA, Little
Chuckwalla Mountains WA, Palen-McCoy WA, Palo Verde Mountains WA, Rice Valley WA,
Corn Springs Scenic ACEC, and the Bradshaw Trail BLM Backcountry Byway.

- 28
- 29 30

31

9.4.14.3 SEZ-Specific Design Features and Design Feature Effectiveness

32 As noted in Section 5.12, the presence and operation of large-scale solar energy facilities 33 and equipment would introduce major visual changes into non-industrialized landscapes and 34 could create strong visual contrasts in line, form, color, and texture that could not easily be 35 mitigated substantially. Implementation of the programmatic design features presented in 36 Appendix A, Section A.2.2, would be expected to reduce the magnitude of visual impacts 37 experienced: however, the degree of effectiveness of these design features could be assessed only 38 at the site- and project-specific level. Given the large scale, reflective surfaces, and strong 39 regular geometry of utility-scale solar energy facilities, and the typical lack of screening 40 vegetation and landforms within the SEZ viewsheds, siting the facilities away from sensitive visual resource areas and other sensitive viewing areas is the primary means of mitigating visual 41 42 impacts. The effectiveness of other visual impact mitigation measures would generally be 43 limited. 44

45 While the applicability and appropriateness of some mitigation measures would depend 46 on site- and project- specific information that would be available only after a specific solar

1 2	energy project had been proposed, the following SEZ-specific design features can be identified for the Riverside East SEZ at this time:
3 4 5 6 7 8 9 10 11 12	• Within the SEZ, in areas west of the northwest corner of Section 6 of Township 006S Range 017E and in areas north and west of the northwest corner of Section 30 of Township 005S Range 018E, visual impacts associated with solar energy development in the SEZ should be consistent with VRM Class II management objectives (see Table 9.4.14.3-1), as experienced from KOPs (to be determined by the BLM) within Joshua Tree NP and the Palen-McCoy WA. The VRM Class II impact level consistency mitigation would affect approximately 67,704 acres (273.99 km ²) within the western portion of the SEZ.
13 14 15 16 17 18 19 20 21 22	 Within the SEZ, in areas visible from and within 3 mi (4.8 km) of the Rice Valley or Big Maria Mountains WAs, visual impacts associated with solar energy project operation should be consistent with VRM Class II management objectives, as experienced from KOPs (to be determined by BLM) within the WAs, and in areas visible from between 3 and 5 mi (4.8 and 8.0 km), visual impacts should be consistent with VRM Class III management objectives. The VRM Class II impact level consistency mitigation would affect approximately 11,926 acres (48.263 km²) within the northeastern portion of the SEZ. The VRM Class III impact level consistency mitigation would affect
22 23 24 25	approximately 19,676 additional acres (79.626 km ²).
23 26 27	Areas within the SEZ affected by these design features also shown in Figure 9.4.14.3-1.
28 29	impacts associated with solar energy development within the SEZ.
30 31	Application of the distance-based mitigation to restrict allowable visual impacts associated with solar energy project in areas west of the northwest corner of Section 6 of
32 33 34 35 36 37 38	Township 006S Range 01/E and in areas north and west of the northwest corner of Section 30 of Township 005S Range 018E would substantially reduce potential visual impacts on Joshua Tree NP, the Palen-McCoy WA, the Chuckwalla Mountains WA, Corn Springs Scenic ACEC, I-10, State Route 177, and the communities of Desert Center and Lake Tamarisk, by limiting impacts within the BLM-defined and foreground–middleground distance of the viewsheds of these areas, where potential visual impacts would be greatest.
39 40 41 42 43 44 45	Application of the distance-based mitigation to restrict allowable visual impacts associated with solar energy project operations within 5 mi (8 km) of the Rice Valley and Big Maria Mountains WAs would substantially reduce potential visual impacts on the WAs by limiting impacts within the BLM-defined foreground of the viewshed of these areas, where potential visual impacts would be greatest. Impacts would also be reduced on I-10 and the communities within the Palo Verde Valley.
46	

TABLE 9.4.14.3-1 VRM Management Class Objectives

	VRM Management Class Objectives
Class I Objective	The objective of this class is to preserve the existing character of the landscape. This class provides for natural ecological changes; however, it does not preclude very limited management activity. The level of change to the characteristic landscape should be very low and must not attract attention.
Class II Objective	The objective to this class is to retain the existing character of the landscape. The level of change to the characteristic landscape should be low. Management activities may be seen, but should not attract the attention of the casual observer. Any changes must repeat the basic elements of form, line, color, and texture found in the predominant natural features of the characteristic landscape.
Class III Objective	The objective of this class is to partially retain the existing character of the landscape. The level of change to the characteristic landscape should be moderate. Management activities may attract attention but should not dominate the view of the casual observer. Changes should repeat the basic elements found in the predominant natural features of the characteristic landscape.
Class IV Objective	The objective of this class is to provide for management activities which require major modification of the existing character of the landscape. The level of change to the characteristic landscape can be high. These management activities may dominate the view and be the major focus of viewer attention. However, every attempt should be made to minimize the impact of these activities through careful location, minimal disturbance, and repeating the basic elements.

Source: BLM 1986b.

FIGURE 9.4.14.3-1 Areas within the Proposed Riverside East SEZ Affected by SEZ-Specific Distance-Based Visual Impact Design Features

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	<i>This page intentionally left blank.</i>
14	
15	

9.4.15 Acoustic Environment

1

2 3 4

5

9.4.15.1 Affected Environment

6 The proposed Riverside East SEZ is in the eastern portion of Riverside County in 7 southeastern California. Riverside County has established noise standards based on affected land 8 use and time of day (County of Riverside 2010). Noise standards applicable to solar energy 9 development in the Riverside East SEZ are those established for rural environments: 45 dBA Lea 10 for both daytime and nighttime. In Riverside County, construction noise sources located within 0.25 mi (0.4 km) from an inhabited dwelling are exempt if construction does not occur between 11 12 6 p.m. and 6 a.m. from June through September and between 6 p.m. and 7 a.m. from October 13 through May. 14

15 I-10 runs east-west along the southern edge of the western and central portions of the SEZ and passes through the eastern portion of the SEZ, while State Route 177 passes southwest-16 17 northeast through the western portion of the SEZ. The Arizona and California Railroad passes 18 north-south through the eastern portion of the SEZ and another railroad runs north-south to the 19 west of the western SEZ boundary. That railroad starts from the now-defunct Eagle Mountain 20 iron mine and connects to the UP Railroad near the Salton Sea. There are three airports around 21 the SEZ: Desert Center Airport, surrounded by the western parcels of the SEZ; Blythe Airport, 22 located about 1.5 mi (2.4 km) east of the easternmost SEZ boundary; and the privately owned 23 W R Byron Airport (about 6 mi [10 km] northeast of Blythe Airport), located about 1.5 mi 24 (2.4 km) east of the easternmost SEZ boundary. Because tourism is a major industry in the area, 25 other industrial activities are relatively minimal. Irrigated agricultural activities are scattered over the western portion of the SEZ, and high-density/large-scale agricultural activities exist to the 26 27 east in Blythe. Many sensitive receptors are located within a short distance of the proposed 28 Riverside East SEZ. Sensitive receptors such as schools or churches exist around the 29 southwestern SEZ in Lake Tamarisk, and a hospital is located within 2 mi (3 km) east of the 30 easternmost SEZ boundary. Many residences (mostly farms) are scattered along the western and 31 eastern SEZ boundary. A cluster of employee residences at Eagle Mountain Pumping Station is 32 located about 0.6 mi [1 km] west of the western SEZ boundary, and residences in Lake Tamarisk 33 are adjacent to the southwestern SEZ boundary. Population centers with schools include Desert 34 Center, which is located at the southwestern edge of the SEZ, and Blythe, located about 5 mi 35 (8 km) east of the eastern SEZ boundary. Therefore, noise sources around the SEZ include road 36 traffic, railroad traffic, aircraft flyover, agricultural activities, and activities and events at nearby 37 residences. Background noise levels would be relatively high along I-10 and State Route 177 and 38 around airports, while noise levels are similar to wilderness natural background levels at portions 39 of the SEZ far from roads, airports, and agricultural activities, mostly the northern portions of the 40 SEZ. To date, no environmental noise survey has been conducted around the Riverside East SEZ. On the basis of the population density, the day-night average sound level (L_{dn} or DNL) is 41 estimated to be 45 dBA for Riverside County, which is on the high end for a rural area¹² 42 43 (Eldred 1982; Miller 2002).

44

¹² Rural and undeveloped areas have sound levels in the range of 33 to 47 dBA L_{dn} (Eldred 1982). Typically, the nighttime level is 10 dBA lower than the daytime level, and it can be interpreted as 33 to 47 dBA (mean 40 dBA) during daytime hours and 23 to 37 dBA (mean 30 dBA) during nighttime hours.

1 2

9.4.15.2 Impacts

3 Potential noise impacts associated with solar projects in the Riverside East SEZ would 4 occur during all phases of the projects. During the construction phase, potential noise impacts 5 associated with operation of heavy equipment and vehicular traffic on several nearby residences 6 (adjacent to the western SEZ boundary) would be anticipated, albeit of short duration. During the 7 operations phase, potential impacts on nearby residences would be anticipated, depending on the 8 solar technologies employed. Noise impacts shared by all solar technologies are discussed in 9 detail in Section 5.13.1, and technology-specific impacts are presented in Section 5.13.2. Impacts 10 specific to the Riverside East SEZ are presented in this section. Any such impacts would be minimized through the implementation of required programmatic design features described in 11 12 Appendix A, Section A.2.2, and through the application of any additional SEZ-specific design 13 features (see Section 9.4.15.3 below). This section primarily addresses potential noise impacts on 14 humans, although potential impacts on wildlife at nearby sensitive areas are discussed. Additional discussion on potential noise impacts on wildlife is presented in Section 5.10.2. 15

16 17

18

19

9.4.15.2.1 Construction

The proposed Riverside East SEZ has a relatively flat terrain; thus, minimal site preparation activities would be required, and associated noise levels would be lower than those during general construction (e.g., erecting building structures and installing equipment, piping, and electrical). Solar array construction would also generate noise, but it would be spread over a wide area.

26 For the parabolic trough and power tower technologies, the highest construction noise 27 levels would occur at the power block area; a maximum of 95 dBA at a distance of 50 ft (15 m) 28 is assumed, if impact equipment such as pile drivers or rock drills is not being used. Typically, 29 the power block area is located in the center of the solar facility, at a distance of more than 30 0.5 mi (0.8 km) to the facility boundary. Noise levels from construction of the solar array 31 would be lower than 95 dBA. When geometric spreading and ground effects are considered, as 32 explained in Section 4.13.1, noise levels would attenuate to about 40 dBA at a distance of 33 1.2 mi (1.9 km) from the power block area. This noise level is typical of daytime mean rural 34 background level. In addition, mid- and high-frequency noise from construction activities is 35 significantly attenuated by atmospheric absorption under the low-humidity conditions typical of 36 an arid desert environment and by temperature lapse conditions typical of daytime hours; thus 37 noise attenuation to background levels would occur at distances somewhat shorter than 1.2 mi 38 (1.9 km). If a 10-hour daytime work schedule is considered, the EPA guideline level of 55 dBA 39 L_{dn} for residential areas (EPA 1974) would occur at about 1,200 ft (370 m) from the power block 40 area, which would be well within the facility boundary. For construction activities occurring near the residences adjacent to western SEZ boundary, estimated noise levels at the nearest residences 41 42 would be about 74 dBA,¹³ which is well above the Riverside County standard of 45 dBA

¹³ Typically, the heavy equipment operators would not allow public access any closer than 330 ft (100 m) for safety reasons. In other words, construction and solar facility would not occur within this distance from the nearest residence.

1 daytime L_{eq} for rural environments. In addition, an estimated 70 dBA L_{dn}^{14} at this receptor is 2 well above the EPA guideline of 55 dBA for residential areas. 3

- 4 It is assumed that a maximum of three projects at any one time would be developed for 5 SEZs larger than 30,000 acres (121.4 km²) such as the Riverside East SEZ. If all three projects 6 were to be built within the SEZ near the residences in the western SEZ boundary, noise levels 7 would be only a little higher than the above-mentioned values, because the second and third 8 construction sites would be far from the first construction site due to the irregular shape of the 9 SEZ. Under this construction scenario assumption, combined noise levels would be less than a 10 noticeable increase of about 3 dBA over those for a single project.
- 11

12 In addition, noise levels were estimated at the specially designated areas within 5-mi 13 (8-km) from the Riverside East SEZ, which is the farthest distance that noise except extremely 14 loud noise can be discernable. There are several specially designated areas within the range where noise might be an issue: Joshua Tree WA, Palen/McCoy WA, Rice Valley WA, Big Maria 15 16 Mountains WA, Mule Mountains ACEC, Chuckwalla DWMA, and Alligator Rock ACEC. These areas abut the Riverside East SEZ, except Rice Valley WA and Alligator Rock ACEC, 17 18 which are located about 0.5 mi (0.8 km) north of the eastern SEZ and 500 ft (150 m) south of the 19 western SEZ, respectively. For construction activities occurring near these specially designated 20 areas, noise levels are estimated to be about 74 dBA at the locations abutting the SEZ, higher 21 than the typical daytime mean rural background level of 40 dBA. Thus, if construction would 22 occur near the specially designated areas, portions of those areas close to the SEZ (within 23 approximately 1 mi [1.6 km]) could be disturbed by construction noise from the SEZ. However, sound levels above 90 dB are likely to adversely affect wildlife (Manci et al. 1988). Thus, 24 25 construction noise from the SEZ is not likely to adversely affect wildlife in nearby specially 26 designated areas, except in areas directly adjacent to the construction site. 27

Depending on soil conditions, pile driving might be required for installation of solar dish engines. However, the pile drivers used would be relatively small and quiet, such as vibratory or sonic drivers, rather than the impulsive impact pile drivers frequently seen at large-scale construction sites. Potential impacts on neighboring residences (just next to the western SEZ boundary) would be anticipated to be minor, except when pile driving occurs near the residences.

34 It is assumed that most construction activities would occur during the day, when noise is 35 better tolerated, than at night, because of the masking effects of background noise. In addition, 36 construction activities for a utility-scale facility are temporary in nature (typically a few years). 37 Construction would cause some unavoidable but localized short-term noise impacts on 38 neighboring communities, particularly for activities occurring near the western and eastern 39 proposed SEZ boundary, close to the nearby residences.

40

Construction activities could result in various degrees of ground vibration, depending
 on the equipment used and construction methods employed. All construction equipment causes
 ground vibration to some degree, but activities that typically generate the most severe vibrations

¹⁴ For this analysis, background levels of 40 and 30 dBA for daytime and nighttime hours, respectively, are assumed, which result in a day-night average noise level (L_{dn}) of 40 dBA.

1 are high-explosive detonations and impact pile driving. As is the case for noise, vibration would 2 diminish in strength with distance. For example, vibration levels at receptors beyond 140 ft 3 (43 m) from a large bulldozer (87 VdB at 25 ft [7.6 m]) would diminish below the threshold of perception for humans, which is about 65 VdB (Hanson et al. 2006). During the construction 4 5 phase, no major construction equipment that can cause ground vibration would be used, and no 6 residences or sensitive structures are located in close proximity. Therefore, no adverse vibration 7 impacts are anticipated from construction activities, including from pile driving for dish engines. 8 9 For this analysis, the impacts of construction and operation of transmission lines outside

of the SEZ were not assessed, assuming that the one or more of the existing transmission lines (ranging from 115 kV to 500 kV) located within the SEZ might be used to connect new solar facilities to the regional grid and that additional project-specific analysis would be conducted for new transmission construction or line upgrades. However, some construction of transmission lines could occur within the SEZ. Potential noise impacts on nearby residences would be a minor component of construction impacts in comparison with solar facility construction and would be temporary in nature.

17 18

19

20

9.4.15.2.2 **Operations**

Noise sources common to all or most types of solar technologies include equipment motion from solar tracking; maintenance and repair activities (e.g., washing mirrors or replacing broken mirrors) at the solar array area; commuter/visitor/support/delivery traffic within and around the solar facility; and control/administrative buildings, warehouses, and other auxiliary buildings/structures. Diesel-fired emergency power generators and fire water pump engines would be additional sources of noise, but their operations would be limited to several hours per month (for preventive maintenance testing).

28

With respect to the main solar energy technologies, noise-generating activities in the
 PV solar array area would be minimal, related mainly to solar tracking, if used. Dish engine
 technology, which employs collector and converter devices in a single unit, on the other hand,
 generally has the strongest noise sources.

34 For the parabolic trough and power tower technologies, most noise sources during 35 operations would be in the power block area, including the turbine generator (typically in an 36 enclosure), pumps, boilers, and dry- or wet-cooling systems. The power block is typically 37 located in the center of the facility. On the basis of a 250-MW parabolic trough facility with a 38 cooling tower (Beacon Solar, LLC 2008), simple noise modeling indicates that noise levels 39 would be more than 85 dBA around the power block, but about 51 dBA at the facility boundary, 40 about 0.5 mi (0.8 km) from the power block area. For a facility located near the southwestern 41 corner of the SEZ (in Lake Tamarisk), the predicted noise level would be about 51 dBA at the 42 nearest residence just next to the SEZ boundary, which is higher than the Riverside County 43 standard of 45 dBA daytime Leq. If thermal energy storage (TES) were not used (i.e., if the operation were limited to daytime, 12 hours only¹⁵), the EPA guideline level of 55 dBA (as Ldn 44

¹⁵ Maximum possible operating hours at the summer solstice, but limited to 7 to 8 hours at the winter solstice.

1 for residential areas) would occur at about 1,370 ft (420 m) from the power block area and thus

- 2 would not be exceeded outside of the proposed SEZ boundary. At the nearest residences, noise
- 3 levels of about 49 dBA L_{dn} would be estimated, which is below the EPA guideline. As for
- 4 construction, if three parabolic trough and/or power tower facilities were operating around the
- 5 residences in the western portion of the SEZ, combined noise levels would be a little higher than 6 the above mentioned values below a just noticeable increases of above 2 dDA
- the above-mentioned values, below a just-noticeable increase of about 3 dBA over a single
 facility. However, day-night average sound levels higher than those estimated above by using the
- 8 simple noise modeling would be anticipated if TES were used during nighttime hours, as
- 9 explained below and in Section 4.13.1.
- 10

On a calm, clear night typical of the proposed Riverside East SEZ setting, the 11 12 air temperature would likely increase with height (temperature inversion) because of strong 13 radiative cooling. Such a temperature profile tends to focus noise downward toward the ground. There would be little, if any, shadow zone¹⁶ within 1 or 2 mi (2 or 3 km) of the noise source in 14 the presence of a strong temperature inversion (Beranek 1988). In particular, such conditions 15 16 add to the effect of noise being more discernable during nighttime hours, when the background 17 levels are the lowest. To estimate day-night average sound levels (L_{dn}), 6-hour nighttime 18 generation with TES is assumed after 12-hour daytime generation. For nighttime hours under 19 temperature inversion, 10 dBA is added to sound levels estimated from the uniform atmosphere 20 (see Section 4.13.1). On the basis of these assumptions, the estimated nighttime noise level at the 21 nearest residences (about 0.5 mi [0.8 km]) from the power block area for a solar facility located 22 near the southwestern SEZ boundary) would be 61 dBA Leq, which is much higher than 23 Riverside County regulation of 45 dBA nighttime Leq. The day-night average noise level is estimated to be about 63 dBA L_{dn}, which is higher than the EPA guideline of 55 dBA for 24 25 residential areas. The assumptions are conservative in terms of operating hours, and no credit 26 was given to other attenuation mechanisms, so it is likely that sound levels would be lower than 27 63 dBA at the nearby residences in Lake Tamarisk, even if TES is used at a solar facility. If three 28 parabolic trough and/or power tower facilities are operating around the nearby residences in the 29 southwestern portion of the SEZ, combined noise levels would be a little higher than these 30 values, as explained above, but lower than a just-noticeable increase of about 3 dBA over a single facility. Consequently, operating parabolic trough or power tower facilities with TES and 31 32 located near the southwestern SEZ boundary could result in sound levels above the noise 33 standard or guideline, and adverse noise impacts could occur at the nearest residences. In the 34 permitting process, refined noise propagation modeling would be warranted along with 35 measurement of background sound levels.

36

Associated with operation of a parabolic trough or power tower solar facility occurring near the specially designated areas, the estimated daytime level of 51 dBA at the boundary of these areas is higher than the typical daytime mean rural background level of 40 dBA, while the estimated nighttime level of 61 dBA is much higher than the typical nighttime mean rural background level of 30 dBA. However, operation noise from a parabolic trough or power tower solar facility with TES is not likely to adversely affect wildlife at the nearby specially designated areas (Manci et al. 1988).

44

¹⁶ A shadow zone is defined as the region in which direct sound does not penetrate because of upward diffraction.

1 The solar dish engine is unique among concentrating solar power (CSP) technologies, 2 because it generates electricity directly and does not require a power block. A single, large 3 solar dish engine has relatively low noise levels, but a solar facility might employ tens of 4 thousands of dish engines, which would cause high noise levels around such a facility. For 5 example, the proposed 750-MW SES Solar Two dish engine facility in California would employ 6 as many as 30,000 dish engines (SES Solar Two, LLC 2008). At the Riverside East SEZ, on the 7 basis of the assumption of dish engine facilities of up to 18,035-MW total capacity (covering 8 80% of the total area, or 162,317 acres [657 km²]), up to 721,400 25-kW dish engines could be 9 employed. Also for a large dish engine facility, several thousand step-up transformers would be 10 embedded in the dish engine solar field, along with several substations; however, the noise from 11 these sources would be masked by dish engine noise.

12

13 The composite noise level of a single dish engine would be about 89 dBA at a distance of 14 3 ft (0.9 m) (SES Solar Two, LLC 2008). This noise level would be attenuated to about 40 dBA 15 (typical of the mean rural daytime environment) within 340 ft (105 m). However, the combined 16 noise level from hundreds of thousands of dish engines operating simultaneously would be high 17 in the immediate vicinity of the facility, for example, about 54 dBA at 1.0 mi (1.6 km) and 18 51 dBA at 2 mi (3 km) from the boundary of the square-shaped dish engine solar field, both 19 of which are higher than the Riverside County standard of 45 dBA daytime Lea for rural 20 environments. However, these levels would occur at somewhat shorter distances than the 21 aforementioned distances, considering noise attenuation by atmospheric absorption and 22 temperature lapse during daytime hours. To estimate noise levels at nearby residences, it was 23 assumed dish engines were placed all over the Riverside East SEZ at intervals of 98 ft (30 m). 24 On the basis of this assumption, the estimated noise levels at all nearby receptors within a 2-mi 25 (3-km) distance of the SEZ boundary would be higher than the Riverside County standard of 26 45 dBA daytime Lea for rural environments. The noise level would decrease to the level of the 27 Riverside County standard of 45 dBA daytime Leq for rural environments at about 3 mi (5 km) 28 from the SEZ boundary. The highest noise levels of about 59 dBA Leq would be estimated for a 29 receptor near the east central SEZ boundary. On the basis of 12-hr daytime operation, the 30 estimated 56 dBA Ldn for this receptor is a little higher than the EPA guideline of 55 dBA Ldn 31 for residential areas. At other receptors, 55 dBA or less Ldn was estimated. While this upper-32 limit estimate for operation of dish engines over the entire Riverside East SEZ is highly unlikely 33 to be attained, noise levels from, for example, a single 1,000-MW facility located at the SEZ 34 boundary would not be much lower, only about several decibels lower, because contributions to 35 levels from dish engines at further distances would be minor. A dish engine facility near the 36 western or eastern SEZ boundary close to the nearby residences could result in noise levels 37 above Riverside County standard and EPA guideline levels, and could have corresponding 38 adverse noise impacts on residents there. Noise from dish engines might be masked by 39 background noise if a receptor is located near noisy background sources, such as highways or 40 airports. However, noise from dish engines would have considerable impacts on receptors with 41 low background noise levels.

42

For dish engines placed throughout the SEZ, the estimated highest noise level at the SEZ
boundary would be about 62 dBA, which is higher than the typical daytime mean rural
background level of 40 dBA. However, dish engine noise from the SEZ is not likely to adversely
affect the nearby specially designated areas (Manci et al. 1988).

1 Consideration of minimizing noise impacts is very important during siting for dish engine 2 facilities. Direct mitigation of dish engine noise through noise control engineering could also be 3 considered.

5 During operations, no major ground-vibrating equipment would be used. In addition, 6 no sensitive structures are located close enough to the Riverside East SEZ to experience 7 physical damage. Therefore, potential vibration impacts on surrounding communities and 8 vibration-sensitive structures during operation of any solar facility would be minimal. 9

10 Transformer-generated humming noise and switchyard impulsive noises would be 11 generated during the operation of solar facilities. These noise sources would be located near the 12 power block area, typically near the center of a solar facility. Noise from these sources would 13 generally be limited to within the facility boundary and rarely be heard at nearby residences, 14 assuming a 0.5-mi (0.8-km) distance (at least 0.5 mi [0.8 km] to the facility boundary and to the 15 nearby residences). Accordingly, potential impacts of these noise sources on nearby residences 16 would be minimal.

17

18 For impacts from transmission line corona discharge noise during rainfall events 19 (Section 5.13.1.5), the noise level at 50 ft (15 m) and 300 ft (91 m) from the center of a 230-kV 20 transmission line tower would be about 39 and 31 dBA (Lee et al. 1996), respectively, typical of 21 daytime and nighttime mean background noise levels in rural environments. The noise levels at 22 65 ft (20 m) and 300 ft (91 m) from the center of 500-kV transmission line towers would be 23 about 49 and 42 dBA, typical of high-end and mean daytime background noise levels, 24 respectively, in rural environments. Corona noise includes high-frequency components, which 25 may be judged to be more annoying than other environmental noises. However, corona noise likely would not cause impacts, unless a residence was located close to the source (e.g., within 26 27 500 ft [152 m] of a 230-kV transmission line and 0.5 mi [0.8 km] of a 500-kV transmission line). 28 The proposed Riverside East SEZ is located in an arid desert environment, and incidents of 29 corona discharge would be infrequent. Therefore, potential impacts on nearby residents along the 30 transmission line ROW would be negligible.

- 31
- 32 33

34

9.4.15.2.3 Decommissioning/Reclamation

35 Decommissioning/reclamation requires many of the same procedures and equipment used in traditional construction. Decommissioning/reclamation would include dismantling of solar 36 37 facilities and support facilities such as buildings/structures and mechanical/electrical 38 installations; disposal of debris; grading; and revegetation as needed. Activities for 39 decommissioning would be similar to those used for construction but on a more limited scale. 40 Potential noise impacts on surrounding communities would be correspondingly lower than those 41 for construction activities. Decommissioning activities would be of short duration, and their 42 potential impacts would be moderate and temporary in nature. The same mitigation measures 43 adopted during the construction phase could also be implemented during the decommissioning 44 phase.

45

Similarly, potential vibration impacts on surrounding communities and vibration sensitive structures during decommissioning of any solar facility would be lower than those
 during construction and thus minimal.

5 6 7

14

15 16

17

18 19

20

9.4.15.3 SEZ-Specific Design Features and Design Feature Effectiveness

8 The implementation of required programmatic design features described in Appendix A, 9 Section A.2.2, would greatly reduce or eliminate the potential for noise impacts from 10 development and operation of solar energy facilities. While some SEZ-specific design features 11 are best established when project details are being considered, measures that can be identified at 12 this time include the following: 13

- Noise levels from cooling systems equipped with TES should be managed so that levels at the nearby residences to the west and to the east of the SEZ are kept within applicable guidelines. This could be accomplished in several ways, for example, through placing the power block approximately 1 to 2 mi (1.6 to 3 km) or more from residences, limiting operations to a few hours after sunset, and/or installing fan silencers.
- Dish engine facilities within the Riverside East SEZ should be located more
 than 1 to 2 mi (2 to 3 km) from the nearby residences to the west and the east
 of the SEZ (i.e., the facilities should be located in other portions of the
 proposed SEZ). Direct noise control measures applied to individual dish
 engine systems also could be used to reduce noise impacts at the nearest
 residences.

9.4.16 Paleontological Resources

9.4.16.1 Affected Environment

6 The proposed Riverside East SEZ is covered predominantly by Ouaternary/Tertiary 7 deposits of varying types. The eastern half and southwestern portions are mostly composed of 8 thick alluvial deposits (more than 100 ft [30.5 m] thick), ranging in age from the Holocene to the 9 Pliocene. The total acreage of the alluvial deposits within the SEZ is 147,295 acres (596 km²), or 10 about 73% of the SEZ. The northwest and central sections are mostly composed of eolian (dune sand) and playa sediments. The total area of eolian sediments within the SEZ is 50,927 acres 11 12 (206 km²), or 25% of the SEZ, and the total area of playa sediments is 3,081 acres (12 km²), or 13 2% of the SEZ. Peripheral sections of the SEZ are composed of residual materials developed in 14 igneous and metamorphic rocks, sedimentary rocks, or carbonate rocks. These discontinuous residual deposits account for 1,788 acres (7.2 km²), or less than 1% of the SEZ. In the absence of 15 16 a PFYC map for the California Desert District, a preliminary classification of PFYC Class 3b is assumed for the alluvial, eolian, playa, and residual deposits. Class 3b indicates that the potential 17 18 for the occurrence of significant fossil materials is unknown and needs to be investigated further 19 (see Section 4.8 for a discussion of the PFYC system). On the basis of some paleontological 20 survey work conducted within the SEZ for existing solar applications, several areas within the 21 SEZ could be classified as PFYC Class 1. Other areas could be classified as PFYC Class 4/5, 22 such as near Quaternary lake bed deposits. The Bouse Formation is likely to be present within 23 the SEZ and has the potential to contain marine, brackish, and freshwater fossils, including a 24 species of barnacle, a foraminifer, mollusks, gastropods, ostracodes, and charophytes. Well tests 25 within the Riverside East SEZ hit the Bouse Formation at a depth of about 60 ft (18 m).

26

1

2 3 4

5

27 Pedestrian surveys to look for surface fossils and exposures of potential fossil-bearing 28 geologic units were conducted for the Palen and Blythe Solar Power Projects in 2009. Five 29 nonsignificant fossil occurrences or points were recorded for the Palen project, predominantly 30 consisting of petrified wood and one possible mammal jaw fragment from the surface of 31 Quaternary deposits. In addition to the field reconnaissance, a records search indicated that the 32 potential for subsurface deposits of paleontological material ranged from low to high, increasing 33 with depth. A portion of the Palen project was identified as having a high sensitivity for 34 containing significant paleontological resources in areas of Quaternary lakebed deposits. The 35 recommendation of the report is to monitor ground disturbances in Quaternary lakebed deposits, 36 due to their sensitivity, on a full-time basis and to prepare a Paleontological Resource 37 Monitoring and Mitigation Plan for the project.

38

39 For the Blythe project, 37 nonsignificant fossil occurrences of petrified wood were 40 recorded, in addition to 64 nonsignificant fossil points of turtle shell fragments, vertebrate fragments, and invertebrate specimens. Several portions of the Blythe project area, including 41 42 areas of alluvial deposits in the McCoy Wash and Palo Verde Mesa areas and older alluvial fan 43 and alluvial valley deposits, have been identified as having high sensitivity for containing 44 possible significant subsurface paleontological resources. Quaternary alluvium deposits of 45 modern washes range in sensitivity from low to high, increasing sensitivity with depth. The 46 recommendation of the report is to prepare a Paleontological Resource Monitoring and

Mitigation Plan for the project and monitor ground disturbance in all areas of high sensitivity,
 including areas of low to high sensitivity when ground disturbances equal or exceed 5 ft (1.5 m)
 in depth.

9.4.16.2 Impacts

8 The potential for impacts on significant paleontological resources at the Riverside East 9 SEZ is relatively unknown, but the potential is high in some areas. A more detailed investigation 10 of the local geological deposits of the SEZ and their potential depth is needed prior to project approval. Once a project area has been chosen, a paleontological survey will likely be needed 11 12 following consultation with the BLM. The appropriate course of action would be determined as 13 established in BLM IM2008-009 and IM2009-011 (BLM 2007b, 2008a). Section 5.14 discusses 14 the types of impacts that could occur on any significant paleontological resources found to be 15 present within the Riverside East SEZ. Impacts will be minimized by implementing applicable general mitigation measures from Section 5.14, such as paleontological monitoring and 16 17 development of a management/mitigation plan, and required programmatic design features 18 described in Appendix A, Section A.2.2.

19 20

5 6

7

Indirect impacts on paleontological resources outside of the SEZ, such as through looting
 or vandalism, are unknown but unlikely because any such resources would be below the surface
 and not readily accessed. Programmatic design features for controlling water runoff and
 sedimentation would prevent erosion-related impacts on buried deposits outside of the SEZ.

No new roads or transmission lines have been assessed for the proposed Riverside East SEZ, assuming existing corridors would be used; impacts on paleontological resources related to the creation of new corridors would be evaluated at the project-specific level if new road or transmission construction or line upgrades are to occur.

A programmatic design feature requiring a stop work order in the event of an inadvertent discovery of paleontological resources would reduce impacts by preserving some information and allowing possible excavation of the resource, if warranted. Depending on the significance of the find, it could also result in some modification to the project footprint. Since the SEZ is located in an area preliminarily classified as PFYC Class 3b or greater, a stipulation would be included in permitting documents to alert solar energy developers of the possibility of a delay if paleontological resources were uncovered during surface-disturbing activities.

- 37 38
- 39 40

9.4.16.3 SEZ-Specific Design Features and Design Feature Effectiveness

41 Impacts would be minimized through the implementation of required programmatic 42 design features, including a stop-work stipulation in the event that paleontological resources are 43 encountered during construction, as described in Appendix A, Section A.2.2. The need for and 44 the nature of any SEZ-specific design features would depend on findings of paleontological 45 surveys.

9.4.17 Cultural Resources

9.4.17.1 Affected Environment

9.4.17.1.1 Prehistory

The proposed Riverside East SEZ is located in a transitional area between the Colorado Desert to the south and the Mojave Desert to the north. The earliest human use of the Colorado and Mojave Deserts was likely during the Paleoindian Period, sometime between 12,000 and 10,000 B.P. Although no Paleoindian sites have been documented in the Colorado Desert, several sites have been documented in the Mojave Desert, and in coastal sites to the west. These known sites are predominantly located near inland pluvial lakes (now mostly dry), and on desert terraces, suggesting that subsistence during this time period focused on mega-fauna and on the local lake and marsh habitats. This hunting-intensive period came to an end around 7,000 to 8,000 B.P., when the mega-fauna became extinct, likely due to intensive hunting and a warming climate; this warming climate consequently led to the shrinking of ancient pluvial lakes. These early sites are characterized by the Clovis complex of fluted points, and later the San Dieguito complex, characterized by core and flaked-based tools, crescents, choppers, planes and scrapers, and some leaf-projectile points (Rogers 1939; Jones and Klar 2007).

The Archaic Period in the Colorado Desert lasted from approximately 8,000 to 1,500 B.P., defined mainly by the Pinto Cultural Complex. The paucity of evidence during the Archaic time period in the Colorado Desert makes it difficult to establish secure chronological sequences, making the Archaic period of the Colorado Desert an important source for regional research questions. The sites during this time period are generally identified by the material culture, distinctive projectile points, and ground stone tools used for processing plant resources. However, some of the Late Archaic sites in the region, mainly found on the margins of the Colorado Desert or around ancient Lake Cahuilla to the southeast of the SEZ, have been identified by buried midden deposits with clay-lined features, cremations, thermal features (such as fire-affected rock and hearths), and perishable items such as basketry, nets, traps, and split-twig figurines (Love and Dahdul 2002; Jones and Klar 2007).

34

35 The Late Prehistoric/Protohistoric Period began about 1500 B.P. and extended until contact with European explorers and colonization of the area. The archaeological 36 37 Patayan complex is thought to be ancestral to the later Yuman cultural groups discussed in 38 Section 9.4.17.1.2. The Late Prehistoric period likely saw a change in subsistence patterns from 39 the preceding Archaic period as Lake Cahuilla recessed, forcing groups to rely on floodplain 40 agriculture and the seasonal flooding of the Colorado River. While agriculture played a large role in their diet, these groups likely maintained some of their hunting and gathering subsistence 41 42 practices, practicing a mix of horticultural and hunter-gatherer subsistence strategies. The Late Prehistoric period also saw the introduction of pottery, buff and brown ware ceramics, and 43 44 paddle and anvil pottery, likely introduced from Mexico. Archaeological assemblages of the 45 period are also characterized by bow-and-arrow technology, evidenced by smaller Cottonwood 46 and Desert side-notched points; a shift in burial practices from inhumation to cremation

techniques; rock art and intaglios; bedrock milling features; and an extensive system of trails,
 along which "pot-drops," lithic debitage, and shrines are found.

9.4.17.1.2 Ethnohistory

3 4 5

6

7 Although of diverse linguistic stock, the Native Americans that inhabited the southeastern 8 California deserts when Euro-Americans first arrived shared similar ways of life and broadly 9 similar beliefs, norms, and values (Halmo 2003). The mountains and valleys of their shared 10 environment provided a variety of seasonally available resources. Native American groups harvested these resources following a regular seasonal pattern. They lived in kin-based groups, 11 12 or lineages, that would join together or split apart depending on the type and the abundance of the resources available. A pattern of seasonal camps combined with permanent villages emerged. 13 Lineages tended to consider specific highly productive areas, such as dense stands of mesquite, 14 15 as their own, while the areas between were shared not only with other lineages, but also with 16 other Tribes (Lightfoot and Parish 2009). Even when they grew wild, plant resources were often managed; stands of plant resources might be pruned, watered, or burned to encourage growth. 17 18 The pattern of seasonal migration to exploit particular resources allowed the groups to adapt to 19 changes in their subsistence base with the arrival of new cultural impulses and populations. 20 Floodplain horticulture, adopted from the Southwest, allowed for the establishment of 21 permanent, often multi-ethnic villages along the Colorado River (Halmo 2003). These became 22 part of the migratory pattern which continued to take some ethnic groups into the highlands to 23 harvest resources available there. Similarly, with the discovery of gold in the 19th century and the influx of Euro-American populations in the 20th century, Native Americans added wage 24 25 labor in mines and on large irrigated farms to their seasonal rounds (Bean et al. 1978). 26

27 The various Native American ethnic groups that inhabited the southeastern California 28 deserts each had an area that they considered their homeland, but the boundaries between these 29 areas were not sharply drawn. Travel to hunt, trade, or just visit neighboring groups was common 30 (Kelly and Fowler 1986). The territorial claims of the different ethnic groups who occupied the 31 Mojave and Colorado Deserts overlap each other. The boundaries between ethnic groups appear 32 to have changed from one time period to another, and groups would sometimes share territory, or 33 a group would invite its neighbors to share an abundant resource (CSRI 2002). In addition, many of the ethnic groups that inhabited the Colorado Desert shared a considerable amount of ritual 34 35 and worldview, including an important religious song cycle sung in the language of the Mohave. 36 This song cycle was associated with a network of trails, the most important of which are the 37 Xam Kwatcan Trail (Johnson 2003) and the Salt Song Trail (Halmo 2003). These trails are both 38 physical and spiritual paths, connecting sacred natural features thought to be imbued with power. 39 Following the trails physically or in spirit was particularly important as part of a mortuary ritual 40 to aid the departed in their journey to the afterlife. Points along the trail are often marked with 41 cairns, sometimes covering burials, cleared sleeping circles, panels of petroglyphs, and in some 42 areas geoglyphs or intaglios. Campsites along the trails are most often associated with springs 43 (CSRI 1987). Other trails were of secular importance, reflecting a web of social and trade links 44 that stretched from the Pacific coast to the Great Plains. As discussed in Section 9.4.18.1, the Native Americans living in southeastern California tend to view the landscape they inhabit 45

holistically, each part intrinsically and inextricably connected to the whole. In some sense, the
 network of trails tied the landscape together.

3

4 The proposed Riverside East SEZ lies in an area of intermittent joint use. It provided 5 seasonal resources to surrounding groups and included important trails that connected them 6 (Knack 1981). The Takic-speaking Serrano were centered in the mountains to the west; the 7 closely related Cahuilla in the Coachella Valley; the Yuman-speaking Quechan at the confluence 8 of the Colorado River and the Gila; their allies, the Mohave, along the river from Blythe to Black 9 Canyon; and the Numic-speaking Chemhuevi in the Chemehuevi Valley and parts of the Mojave Desert. Before the early 19th century, the Halchidhoma lived along the river around what is now 10 11 Blythe.

12 13

14

15

Serrano

The precise sociopolitical boundaries of the Serrano are difficult to define (Kroeber 1925;
Strong 1929). Their name is derived from a Spanish term meaning "highlander" or
"mountaineer." Most researchers place the Serrano homeland in the San Bernardino Mountains
east of the Cajon Pass, and in the Mojave River drainage north of Victorville. They themselves
place their traditional center of origin at Twentynine Palms (CSRI 2002).

21

22 The Serrano were a collection of localized lineages speaking the same language and 23 sharing the same culture, but with little or no overarching political structure. They had cultural 24 ties to the Vanyume on the north and Cahuilla on the south. The Serrano appear to have been 25 primarily gatherers, supplementing their plant-based diet with hunting and fishing. There is 26 considerable variation in altitude within their traditional range, and as with neighboring groups, 27 resources were collected from a number of environments. Most villages were found in the 28 foothills, but some occurred on the desert floor in locations where good water was available. At 29 higher elevations they gathered piñon nuts and acorns, and at lower elevations mesquite pods and 30 yucca heads. The harvests were stored, and excess traded. Where the resource was abundant, 31 lineages might gather to harvest or to communally hunt rabbits or deer (Bean and Smith 1978). 32

Limited by water supply, villages were small, consisting of clusters of tule-thatched, domed, circular huts. Most often they also included a larger ceremonial structure where the lineage leader lived. Their material culture included decorated baskets, pottery, hide blankets, stone pipes, yucca fiber cordage, and an assortment of musical instruments of wood, bone, and shell, similar to the material culture of the Cahuilla (Farmer et al 2009).

38

The Serrano had little contact with the Spanish until 1819 when an *asistencia*, or mission outpost, was established near Redlands. Thereafter, native ways of life rapidly faded as the majority of the population was moved to the missions. By the latter part of the 20th century, most Serrano lived on the Morongo and San Manuel reservations, where they mixed with the Cahuilla and other ethnic groups (Bean and Smith 1978).

- 44
- 45
- 46

Cahuilla

3 Closely related to and associated with the Serrano, the Cahuilla occupied the Coachella 4 Valley. Like the Serrano, their society was composed of lineage-based groups with hereditary 5 leaders, but with no overarching sociopolitical organization. They are believed to have entered 6 the Colorado Desert from the Great Basin sometime between 500 BC and AD 500. They were 7 hunters and gatherers who lived in permanent villages near reliable water. They appear to have first settled on the shores of Lake Cahuilla.¹⁷ and then moved to the mountains as the lake dried. 8 9 The Cahuilla tended toward larger groups that consisted of multiple lineages (Lightfoot and 10 Parish 2009). Preferred settlement sites were near mesquite stands or palm oases. They considered the latter to be sacred (Bean et al 1978). While villages were occupied year-round, 11 12 small groups would move seasonally to temporary camps to collect localized plant resources or 13 to hunt. Larger groups would travel to the mountains together with mountain allies to harvest 14 piñon nuts and acorns. These would be brought to the permanent villages for storage. Species 15 important to the Cahuilla are discussed in Section 9.4.18.

16

1

2

17 The Cahuilla were long-distance traders. The routes westward through San Gorgonio 18 Pass to the coast lay within their traditional use area, and the Cahuilla maintained trading 19 relationships east of the Colorado River with the Maricopa. Like the Chemehuevi, they were part 20 of a network that stretched as far east as the Great Plains (Bean et al 1978). A major east-west 21 trade route referred to as the "Cocomaricopa" or "Halchidhoma Trail" connected the San 22 Gorgonio Pass with the Gila River area and crossed the Colorado River near present-day Blythe. 23 I-10 roughly follows the northern branch of the trail from Blythe westward to Desert Center 24 (Cleland and Apple 2003). The Cahuilla would have been familiar with the southern portions of 25 the proposed Riverside East SEZ.

26 27

28

29

Quechan

30 Sometimes referred to as the Yuma, the Ouechan (Kwatsan) are a Yuman-speaking group 31 closely allied with the Mohave, traditionally centered at the confluence of the Gila and Colorado 32 Rivers. It is not clear when they arrived at the confluence. They were there by the 1770s, but 33 were not mentioned by Francisco Vasquez de Coronado, who passed through the area in 1540. 34 Quechan tradition relates that the Tribe migrated south from the sacred mountain Avikwaame, in 35 the Newberry Mountains near Laughlin, Nevada. They are thought to have arrived at the 36 confluence sometime between the thirteenth and the eighteenth centuries. Traditionally, the 37 Quechan practiced floodplain horticulture, depending on the annual floods of the Colorado River 38 to replenish their fields with fresh silt. The fertility of the soil allowed multiple plantings and 39 harvests, which the Quechan supplemented by gathering plants from the desert and by fishing. 40 During the growing season they dispersed along the floodplains of the Colorado and the Gila

41 Rivers, moving to the upper terraces during the winter. The Quechan prospered using simple

¹⁷ Lake Cahuilla formed when the Colorado River shifted course to the west and flowed into the Salton Sea Basin, then dried when the river reverted to its former course. The process of formation and desiccation was cyclical before the construction of dams on the Colorado, with cycles lasting about 150 years (Redlands Institute 2002).

technology. Their bows were simple and unbacked. Arrows often had no stone points. Digging
 sticks served for planting maize, and clothing was minimal (Bee 1983).

3

While their settlements were more dispersed and independent than those of the Serrano or the Cahuilla, the Quechan had a sense that they were a Tribe, a nation occupying a specific territory. They acted together in warfare; acting together with their allies, the Mohave, they were often at odds with the Halchidhoma, the Maricopa, and the Cocopah.

8

9 The confluence of the Gila and Colorado Rivers was an important crossing along the 10 Yuma-San Diego Trail, which led to the coast. Important to the Spanish, and later the Americans, the Spanish established a mission there in 1779 only to have it destroyed by the 11 12 Quechan and Cahuilla 2 years later. The Hispanic connection remained important to the 13 Quechan, who desired Spanish trade goods, for which they exchanged slaves captured during raids on their enemies (Knack 1981). Between 1826 and 1829 the Quechan joined the Mohave in 14 driving out the Halchidhoma, who controlled another important river crossing. For a time, some 15 16 Quechan moved into the Blythe area, but they had returned south by the second half of the nineteenth century (Bee 1983). After the defeat of Mexico in 1848, the United States established 17 18 at fort at Yuma to control the crossing, which had become an important wagon road. A 19 reservation was established for the Quechan in 1884.

- Like that of their northern neighbors, Quechan cosmology included ritually important
 trails. The most important of these remains the *Xam Kwatcan* Trail. It follows the Colorado
 River, connecting Pilot Knob (*Avikwalali*) with Spirit Mountain (*Avikwaame*), connecting a
 series of ritually important places of power. One of these is Palo Verde Peak, located about
 12 mi (19 km) south of the SEZ (Johnson 2003).
- 26 27

28

Mohave

29 30 The Mohave were primarily at home along the Colorado River, from time to time 31 occupying its banks as far south as Blythe. They appear to have entered the Mojave Valley sometime around AD 1150. They resided chiefly along the eastern bank of the Colorado River, 32 33 but travelled widely, for trade, to harvest seasonally available resources, and out of curiosity. 34 They are likely to have been familiar with Chuckwalla Valley and lands included in the proposed 35 Riverside East SEZ. They lived in sprawling settlements, rather than villages, with houses situated on low hills above the flood plain. They did not engage in irrigation agriculture, but 36 37 relied on seasonal inundation to water and refresh their fields. Unlike most other Colorado 38 Desert Tribes, families owned individual fields and individual mesquite trees (Stewart 1983). 39 Most of the year the Mohave lived on terraces above the Colorado River, moving to the flood 40 plain in the spring to plant crops after seasonal floods receded (Kroeber 1925). 41

The Mohave have traditionally thought of themselves as a nation inhabiting a territory under a hereditary great chief of the Malika clan. Divided into patrilineal clans, they came together for warfare and other purposes. War leaders and shamans had great influence, and power was gained by dreaming, often in sacred locations. Their territorial claims are extensive, reflecting their propensity to travel. They claim as their territory a much larger range than other California Tribes, including all of the Mojave Desert and as far south as the Turtle, Granite, and Eagle Mountains (CSRI 2002), adjacent to, but not including the SEZ. This larger range was where they hunted and gathered to supplement their planted crops and the fish they took from the river. They are likely to have traded, hunted, and gathered in the Riverside East SEZ area. They were less reliant on hunting and gathering than the Chemehuevi, who hunted and gathered in

6 much of the same area (Farmer et al. 2009).

7 8 Besides being used for travel for trade, war, and recreation, trails often had religious 9 significance. The Salt Song Trail, which passes through the SEZ, seems to have originated with 10 the Mohave. The Mohave revere other trails, such as the Keruk Trail of Dreams. The song cycles that are associated with the trails tied specific songs to specific places. Many of these were 11 12 considered places of power, where individuals sought enlightenment, skills, and status through 13 dreaming. These trails are considered sacred, and offerings continue to be left at sacred points along them (Halmo 2003). 14 15

15

17

18

Halchidhoma

19 The Halchidhoma were a Yuman-speaking group who were once located south of the 20 Mohave along the Colorado River. Like the Mohave, they were floodplain cultivators and active 21 traders. Culturally, they were similar to the Mohave and the Quechan, but politically they were 22 their enemies. Their ties were with the Maricopa and Cocopah, also Yuman speakers. Like the 23 Mohave, they were great travelers and traders, establishing the Cocomaricopa or Halchidhoma Trail, and an east-west route later followed by Euro-American immigrants. Their clashes with 24 25 the Mohave and Quechan came to a head sometime around 1825. The Halchidhoma were defeated and began to move to the Gila River to join their Maricopa allies. This process 26 27 continued until about 1840 (Harwell and Kelly 1983).

28

29 30

31

Chemehuevi

32 The Chemehuevi, a Southern Paiute group, occupied the Parker and Blythe Valleys along 33 the Colorado at the invitation of the Mohave, with whom they were allied, sometime between 34 1825 and 1830, after the Mohave and Quechan had driven out the Halchidhoma. In the late 35 1860s, hostilities erupted between the Mohave and Chemehuevi, and part of the Chemehuevi moved west to join Cahuilla and Serrano villages near Twentynine Palms. In 1874, the Office of 36 37 Indian Affairs set aside part of the Mohave reservation along the Colorado River for the 38 Chemehuevi, but many did not want to return. In 1907 a separate reservation was established 39 north of Parker, Arizona (Kelly and Fowler 1986).

40

The Chemehuevi ranged through the eastern half of the Mojave Desert, but were concentrated along the Colorado River, where they adopted flood plain agriculture, and the Chemehuevi Valley away from the river, where they retained their ties to the surrounding upland mountains and valleys. The latter have been called Desert Chemehuevi (*Tiiranniwiwi*)

45 (Farmer et al. 2009). Even those living along the river retained more reliance on hunting and 46 gathering than their neighbors. The Tiiranniwiwi may have been periodically present in the Riverside East SEZ, although it is somewhat south of their claimed traditional Tribal use area.
 Taken together, they had a diverse subsistence base including irrigated mixed horticulture, wild
 plant management, and hunting. Normally they produced a surplus that they were able to trade
 (Halmo 2003).

6 Chemehuevi settlements were scattered and band size varied with the season and
7 available water, plant, and animal resources. Dwellings varied from pole structures covered with
8 brush, to rock shelters, to earth-covered huts often with open fronts, adopted from the Mohave.
9 Other items of Mohave material culture were likewise adopted, including ceramic styles, square
10 metates (grinding stones), storage platforms, and personal adornment (Farmer et al. 2009).

12 The relations between the Chemehuevi and neighboring Tribes were mostly amicable. 13 They maintained a trading relationship with the Cahuilla, and groups of Chemehuevi would 14 travel as far west as the coast to trade for shells and as far east as the Hopi mesas. They were 15 involved in a trade network that stretched from the Channel Islands to the Gila River Valley and 16 the Great Plains, with the potential to bring material culture from some distance away to the 17 Chemehuevi homeland.

18 19

20

21

11

9.4.17.1.3 History

22 European explorers first entered the southeastern California deserts in the sixteenth 23 century. Early explorers of Alta, California, reached the Colorado River by way of the Gulf of California, and proceeded up the stream past the confluence of the Gila River, but explored 24 25 little of the interior deserts. For the next 200 years Spanish penetration of the interior deserts was intermittent, resulting in a prolonged protohistoric period (see Sections 9.4.17.1.1 and 26 27 9.4.17.1.2). Juan Bautista de Anza crossed the Colorado River with the assistance of the 28 Quechan on his way to Monterey in 1774. His route, which is located well south of the proposed 29 Riverside East SEZ near the border of California and Mexico, became the main travel corridor 30 between Arizona and central California in the 1800s. Another trail, the Cocomaricopa Trail, 31 passed through the SEZ; it began as a Native American trail and later served as the mail route between Sonora, Mexico, and Alta, California. The trail's name changed to Bradshaw Trail over 32 33 time, as William Bradshaw established an overland stage route using the trail in an effort to 34 attract miners to the area

35

36 The nineteenth and early twentieth centuries were characterized by mining and 37 prospecting in the Colorado Desert. Gold, silver, copper, gypsum, borax, and manganese were 38 the primary deposits of interest. A series of military camps and forts were established in Arizona, 39 Nevada, and California between 1848 and 1890 to protect those moving into the area from 40 hostile Tribes; tensions had increased between settlers and Native Americans as a result of the estimated 8,000 immigrants to the area during the Gold Rush. In addition to the trail initially 41 42 established by de Anza, Jedediah Smith created a new trail into California in 1826 that passed 43 through present day Needles, well north of the SEZ. In 1877, gold prospector Thomas Blythe 44 established water rights along the Colorado River in an effort to promote and establish a town bearing his name, located just east of the SEZ. This new development in the deserts was 45 46 dependent on water and transportation. In 1872, the Southern Pacific Railroad started toward

1 California; by 1877, it extended to Yuma, Arizona, and by 1880 it had reached the Chocolate 2 Mountains southeast of the SEZ. The Eagle Mountain Mine, located immediately west of the 3 SEZ and north of Desert Center, operated as a gypsum and iron mine until 1983, and a 52 mi 4 (84 km) rail line connected the mine with the Southern Pacific Railroad at Duramid. Production 5 at the mines in the area increased during both World Wars as the need for metals (iron, gold, 6 silver, manganese, and gypsum) increased. In addition to the Eagle Mountain Mine, mining prospects are known in the Mule Mountains, Big Maria Mountains, McCoy Mountains, and 7 8 Palen Mountains, all of which are ranges located in very close proximity to the proposed 9 Riverside East SEZ. Water did not come to the Colorado Desert until the 1930s when the MWD 10 was created and work began on the CRA extending from Parker Dam to Los Angeles; it was completed in 1938. Associated with the construction of the aqueduct were several roads and 11 12 transmission lines, as well engineering camps, one of which was built at the Eagle Mountain 13 pump lift.

14

15 In 1942, the U.S. Army identified 18,000 mi² (46,000 km²) of desert in California and 16 Arizona for training troops in a desert environment in preparation for combat in North Africa. The area came to be known as the Desert Training Center/California-Arizona Maneuver area, 17 18 or DTC/C-AMA, in 1943 as the massive training facility expanded its size to 31,500 mi² 19 (81,600 km²) and its range of activities from training troops, testing and developing equipment 20 and supplies, and developing new techniques and tactics for desert warfare to large-scale training 21 and maneuvering. It is estimated that over 1,000,000 men trained at the DTC/C-AMA. Although 22 it only operated between 1942 and 1944, it represents a significant period in U.S. history and 23 includes a number of archaeological features of importance, including the remains of training 24 camps, airfields, bivouacs, maneuver areas, and tank tracks (Bischoff 2000). 25

26 In a larger context, the DTC was a part of the early days of U.S. involvement in WWII. The German army was advancing across Europe and the Italian army had struck out in Libva 27 28 and Egypt. British forces had been able to successfully counterattack the Italian army, but this 29 resulted in Germany entering North Africa to help the Italians. General Erwin Rommel of the 30 German army was successful with his desert army advancing across Libya and then into Egypt 31 against the British. The prospect of Germany and Italy controlling Egypt and the Japanese 32 successes in India, propelling them toward Persia, leaving Russia wide open to attack, made it 33 clear to the U.S. that they would need to go to North Africa. General Lesley J. McNair, chief of 34 staff for the Army General Headquarters, recognized the need to prepare American soldiers for 35 desert warfare in a terrain similar to that of North Africa. He placed Major General George S. 36 Patton, Jr., who had previously conducted successful training maneuvers in Louisiana, in charge 37 of the desert training center project (Bischoff 2000).

38

39 The location of the DTC was determined in March of 1942, as General Patton toured the desert. Aside from the mountain ranges, the uninhabited desert of eastern California was 40 deemed sufficiently similar to that of North Africa. Patton felt the area was ideal for large-scale 41 42 training exercises because it was remote and desolate, but water was available and three 43 railroads supplied the area. In addition, there were other military facilities nearby (in Riverside, 44 Las Vegas, Indio, Yuma, and Blythe). Patton worked out deals with the railroad companies 45 (Union Pacific, Santa Fe, and Southern Pacific) and the Municipal Water District in order to 46 supply transportation and water for the troops. Camp Young was the first camp established near

1 Blythe, and it became the DTC headquarters. Several other camps were constructed over the 2 course of the DTC/C-AMA operation. The camps were temporary in nature, constructed mostly 3 of tents with some wooden structures to house administrative centers or hospitals. The only 4 permanent construction consisted of open-air chapels and large relief maps. Associated with 5 most of the camps were maneuver areas, rock-lined insignias, and arms ranges. By late summer 6 of 1942, Patton was ordered to North Africa, where he successfully commanded the western task 7 force of the operation to victory under Operation Torch. The DTC was quickly placed under the 8 command of Major General Alvan Gillem and the first set of maneuvers was conducted in the 9 fall. This first set of maneuvers was considered unrealistic, and the DTC was ordered to operate 10 like a theater of operations in a combat setting, including establishing communication zones and combat zones. This was the first time the Army had simulated a theater of operation. 11 12 Riverine operations across the Colorado River were also added. At its height the DTC 13 contained 14 camps, with 11 in California and 3 in Arizona, each capable of holding at least 14 15,000 soldiers during a typical 14-week training schedule. There were also airfields, hospitals, supply depots, and railheads. Several airfields were located in close proximity to the SEZ: 15 16 Shaver's Summit, located near Chiriaco, the Desert Center Army Airfield, and Rice Army airfield, located north of the Riverside East SEZ. The importance of air support should not be 17 18 overlooked, as it was seen as an integral part of the desert training experience. On-the-ground 19 troops needed to be able to conceal themselves as much as possible to prevent detection during 20 simulated air attacks. In 1943, as the need for desert training waned with the close of the North 21 African campaign, the concept and name of the DTC changed to the California-Arizona 22 Maneuver Area. Its mission was to conduct broader large-scale training to toughen soldiers 23 mentally and physically and to provide battle conditions for conducting firing training and 24 testing and developing equipment, supplies, and training methods. The DTC/C-AMA saw its greatest level of activity in the summer and fall of 1943. In late 1943, personnel shortages 25 (due to needs for personnel overseas) resulted in inefficient operation of the C-AMA, and 26 27 General McNair recommended the facility be closed. The DTC/C-AMA was declared surplus in 28 April 1944 by the War Department and was closed by the end of the month (Bischoff 2000). 29 30 Of specific interest in the vicinity of the Riverside East SEZ are Camp Coxcomb, Camp 31 Desert Center, and Camp Young. Camp Coxcomb was located just northwest of the SEZ, between State Route 177 and the MWD aqueduct, and was constructed in the summer of 1942. 32 33 Considered more permanent than some of the other camps, it had wooden floors and screens in 34 the Post Exchange, along with 39 shower buildings, 165 latrines, 284 pyramidal wooden tent 35 frames, a 400,000-gallon water tank, and a combination observation tower and flag tower. 36 Several infiltration courses, machine gun, rifle and pistol ranges, and training areas have been found in the surrounding area associated with the camp. Camp Desert Center was located on the 37 38 north side of I-10, between Chiriaco Summit and Desert Center west of the SEZ. It consisted of a 39 maneuver area, an encampment with temporary housing, an evacuation hospital, an observers' 40 camp, an ordinance campsite, and a quartermaster truck site. Camp Young was located just east of the SEZ, outside Blythe, and it was here General Patton lived during most of his stay. This 41 42 camp maintained two station hospitals, several rifle and combat ranges to the south of the camp,

- 98 administration facilities, and 50 warehouses, along with bathhouses, mess halls and kitchens,
 Post Exchanges, hundreds of latrines, a post office, a radio station, a coliseum, pump stations,
- 45 officer clubs, and various shops.
- 46

9.4.17.1.4 Traditional Cultural Properties—Landscape

1

2

3 The Tribes in this part of California tend to take a holistic view of the world; they see the 4 features of their environment as an interconnected whole imbued with a life force. Prominent 5 features may be seen as places of power-sacred places. High hills and mountains tend to be 6 regarded as sacred, while some peaks have special status. Other features that tend to be regarded 7 as sacred include caves, certain rock formations, springs, and hot springs. Revered locations 8 include panels of rock art, evidence of ancestral settlements, arranged-rock sites, burial or 9 cremation areas, and systems of trails. Sacred sites are often seen as places of power where 10 offerings are left (Halmo 2003). Tribes see themselves as exercising divinely given responsibilities of stewardship over the lands where they believe they were created and as 11 12 retaining a divine birthright to those lands. Specific mountain peaks are seen as points of 13 emergence associated with creation stories. Although adopting much of the Mohave cosmology, 14 the Tribes have retained their own identities. For example, the Chemehuevi have their own mountain of creation, Charleston Peak in Nevada (Halmo 2003), distinct from the Mohave's 15 16 Avikwaame (Spirit Mountain) or Newberry Peak, also in Nevada. As mentioned above, there remains considerable interaction among the Tribes that inhabit the southeastern California 17 18 deserts. A system of alliances furthered trade and the sharing of hunting and gathering grounds. 19 20 From the Native American perspective, the proposed Riverside East SEZ includes 21 elements of a sacred landscape tied together by a network of trails. A Prehistoric Trails Network 22 Cultural Landscape/Historic District has been proposed for trails near the SEZ (Tremaine and 23 Kline 2010). A trail of importance to the Chemehuevi and other area Tribes is the Salt Song 24 Trail, which runs generally north–south from north of Las Vegas to an area south of Blythe. It 25 enters the SEZ via the Palen Valley and crosses the Chuckwalla Valley to the Colorado River, 26 where it turns north to its point of origin (CSRI 1987). The Xam Kwatcan Trail, which is 27 significant to the Quechan, also runs north-south. It follows the Colorado River from Pilot Knob 28 (Avikwalali) near the Mexican border with Spirit Mountain (Avikwaame), connecting a series of 29 ritually important places of power. It crosses Palo Verde Mesa (Johnson 2003) on its way north, 30 either within or adjacent to the southern lobe of the proposed Riverside East SEZ. It continues 31 northward along the terraces above the Colorado River to the Blythe Intaglios east of the Big 32 Maria Mountains. In particular, the I-10 corridor follows a route with Native American roots. 33 The Cocomaricopa Trail was a major east-west trade route that is intersected by the Salt Song and *Xam Kwatcan* Trails. It forms a culturally significant corridor and ties together culturally 34 35 important features like Black Rock in the east with Alligator Rock in the Chuckwalla Valley to 36 the west. Segments of this trail have been identified less than 2 mi (3 km) south of the western 37 half of the SEZ. Other segments have been identified in the southern lobe of the SEZ 38 (Eckhardt and Walker 2004). These trails did not consist of a single path, but were a network of 39 intertwining paths most visible on the shoulders and tops of ridge systems, relatively stable 40 alluvial fans, and other upland areas where footing was solid and there was less vegetation to deal with (Cleland and Apple 2003). In addition, the McCoy Springs District, the largest 41 42 concentration of petroglyphs in the region, is associated with the network of trails. Located on 43 the western slope of the McCoy Mountains, within 4 mi (5.5 km) of the SEZ, the district consists 44 of more than 3,360 rock art panels and associated trail segments, archaeological deposits, and 45 sleeping circles. It was not only a focus of prehistoric activity, but remains a culturally important

46 site for Native Americans in the surrounding area (Bagwell and Kline 2010).

During consultations between the BLM and the Tribes regarding the construction of the Blythe, Genesis, and Palen fast-track solar facilities within the Riverside SEZ, Native Americans identified Alligator Rock, the Alligator Rock ACEC, the Palen Dry Lake shoreline, the Palen Dry Lake ACEC, the South Chuckwalla Mountains Petroglyph District, McCoy Springs, Black Rock, and the Mule Mountains ACEC as landscape features within 15 mi (24 km) of the proposed facilities that are of religious or cultural importance to the Tribes (BLM and CA SHPO 2010a–c).

8

14

9 Other mountains considered sacred include the Big Maria, Coxcomb, and Eagle 10 Mountains (Halmo 2003). The Big Maria Mountains are adjacent to and northwest of the SEZ 11 and form the western wall of McCoy Wash, and the Coxcomb Mountains lie between the 12 Chuckwalla and Palen Valleys. Both valleys include parts of the SEZ. The Eagle Mountains 13 are just west of the SEZ.

The proposed Riverside East SEZ appears to have been primarily used as a seasonal gathering area. The remains of temporary occupation sites have been found between the Chuckwalla Mountains and the Coxcomb Mountains. Some are associated with roasting pits, suggesting the area was a seasonal agave-harvesting area. This part of the valley has been identified as more likely to include resources important to Native Americans than the eastern end of the basin. Sites associated with rituals tend to be found on the basin floors, with more permanent campsites found in the foothills (CSRI 1987).

According to a Sacred Lands File Search through the NAHC, no sacred sites were
 identified within the Riverside East SEZ (Singleton 2010).

- 25 26
- 27 28

9.4.17.1.5 Cultural Surveys and Known Archaeological and Historic Resources

29 At least 109 previous surveys have been conducted in the vicinity of the proposed 30 Riverside East SEZ, resulting in the recording of 574 total sites, at least 414 of which lie within 31 the SEZ. The other 160 recorded sites are located within at least 5 mi (8 km) of the Riverside 32 East SEZ. Of these sites, 53% are historic in nature, consisting mostly of artifacts related to 33 the DTC/C-AMA, but some artifacts may be associated with mining, and more rarely 34 homesteading/grazing that occurred in the area. The historic site types consist of refuse scatters, 35 consisting mostly of metal cans, glass bottles and jars, broken ceramics, milled lumber, and 36 sundry metal items; historic trails and roads, as well as tank tracks; historic camps consisting of 37 cleared areas, probably for tent pads, and associated features such as hearths/campfires and 38 refuse scatters, which may be associated with construction camps for the linear facilities or 39 military or mining camps; historic cairns, often associated with mining claims; historic features 40 such as survey markers, rock features, prospect pits, stone and wooden structures, fortified 41 positions, aircraft parts, and smoke land mines. About 45% of the sites in the SEZ are prehistoric 42 sites that consist of lithic scatters and guarries related to stone tool and ground stone tool 43 production and maintenance, which make up the majority of prehistoric sites, and ceramic shards 44 and pot drops, cairns, thermal features, and fragmentary bone and trail segments. The remaining 45 2% of sites are multi-component sites, consisting of both historic and prehistoric artifacts. 46

1 Most of the information about archaeological sites in and around the Riverside East SEZ 2 was obtained from current solar energy applications, designated as "fast-track" projects, located 3 within the Riverside East SEZ. The Palen Solar Power Project is located in the area around Palen 4 Lake, in the western part of the Riverside East SEZ. The archaeological survey and research of 5 previously recorded sites in the APE found 57 total sites recorded in the project area, 46 of which 6 are within the Riverside East SEZ. Of these 57 sites, 43 are historic, and 14 sites are prehistoric 7 (AECOM 2009a). The Blythe Solar Power Project is located in the eastern portion of the 8 Riverside East SEZ. Through archaeological survey and determination of previously recorded 9 sites that are located in the Blythe APE, 254 total sites were reported. Of the 254 sites, 204 are 10 located in the Riverside East SEZ, the remaining 50 located within 5 mi (8 km) of the SEZ. There are 180 historic sites recorded, 68 prehistoric sites, and 6 multi-component sites that 11 12 contain both prehistoric and historic artifacts and features (AECOM 2009b). The Genesis Solar 13 Energy Project is located in the central portion of the Riverside East SEZ, just north of Ford Dry 14 Lake. The archaeological survey and previously recorded sites indicated 98 sites present in the Genesis APE, 36 of which are also within the Riverside East SEZ, the other 62 sites being 15 16 located within 5 mi (8 km) of the SEZ (Tetra Tech 2009). Of the 98 sites, 77 are prehistoric in nature, 15 are historic, 4 are multi-component, and 2 are undetermined. The Desert Sunlight 17 18 Solar Farm Project is located in the western portion of the proposed Riverside East SEZ, about 19 6 mi (10 km) north of Desert Center. The archaeological survey and previously recorded sites 20 identified 87 sites in the Desert Solar APE, all of which also are present in the proposed 21 Riverside East SEZ. Of these 87 sites, 75 are historic, 5 are prehistoric, 1 is a multicomponent 22 site, and 2 are undetermined (BLM 2010g).

23

In addition to the solar energy fast-track projects, the Devers-Palo Verde II 500-kV transmission line survey also served as a valuable source of information regarding archaeological sites. This transmission line survey is located south and west of the Riverside East SEZ until it intersects the southeastern portion of the SEZ (as it crosses I-10 near the Wiley Well Rest Area to the area just west of the Palo Verde Mesa). This survey identified 78 archaeological sites—41 sites in the Riverside East SEZ, and 37 sites within 5 mi (8 km) of the SEZ. Fifty-nine of these sites are prehistoric in nature, and the other 19 are historic (Carrico et al. 2005).

31

32 There are two dry lakebeds located in the area of the SEZ, Ford Dry Lake and Palen Dry 33 Lake, portions of which lie in the SEZ. During present times these lakes only hold water during 34 occasional flooding, but it is likely that during the Late Pleistocene and Early Holocene these 35 pluvial lakes were filled with water, providing a lacustrine environment upon which archaic peoples were able to subsist. Lake Cahuilla was located west of the SEZ, and was assuredly 36 37 filled with water at times due to flooding episodes of the Colorado River and Early Pleistocene 38 pluvial actions; a plethora of sites have been documented along the shores of Ancient Lake 39 Cahuilla, dating from the Early Archaic to the Late Prehistoric period. Therefore, it is not 40 unreasonable to assume that Palen Dry Lake and Ford Dry Lake provided similar potential for habitation and subsistence. Also associated with Lake Cahuilla is Obsidian Butte, a large source 41 42 of obsidian that became available for ancient peoples to exploit during receding periods of the 43 lake; this obsidian provided a valuable source of raw material for tool production. 44

In addition to Eagle Mountain Mine, located in the Eagle Mountains, mining activities
 took place in the McCoy Mountains, the Little and Big Maria Mountains, and the Mule

1 Mountains. Other than Eagle Mountain Mine, most of these mines operated for only short

- 2 periods of time. In addition to these more established mines, there are some smaller prospecting3 pits in the surrounding mountains.
- 4

5 There are several areas near the SEZ related to DTC/C-AMA activities, in addition to the 6 nearby camps mentioned in Section 9.4.17.1.3. One of these locations is the Desert Center Army 7 Airfield, consisting of two paved runways, taxi-ways, a parking apron, and 40 constructed 8 buildings that were demolished after DTC/C-AMA use. There is another location in the Midland-9 Big Maria Mountain area, site CA-RIV-1172, that consists of rock features probably related to 10 defensive positions, rock walls, foxholes, dugouts, and cairns. This training area has been recommended as NHRP eligible. North of the SEZ at Palen Pass, is the site of the largest 11 12 maneuver area in the DTC/C-AMA. This site consists of fortifications constructed throughout 13 the pass, gun emplacements, barbed wire entanglements, bunkers, minefields, and foxholes. The 14 best-preserved maneuver area, consisting of foxholes, associated refuse, concertina wire, concrete defensive positions and tank tracks, is in the valley bordered by the Palen, Little Maria, 15 16 and McCoy Mountains, just outside the SEZ. A large minefield between the mountains and the sand dunes to the east of the Coxcomb Mountains may be located within the SEZ. In addition, 17 18 small unit training exercises were held in the Chuckwalla Valley, as well as in the Midland and 19 Styxx Passes. 20

21 The BLM has designated several locations relatively close to the proposed Riverside East 22 SEZ as ACECs because of their significant cultural value. The ACECs contiguous with the SEZ 23 on the south are the Mule Mountains ACEC on the eastern end of the SEZ and the Alligator 24 Rock ACEC on the western end. The proposed SEZ surrounds the Palen Dry Lake ACEC on 25 three sides. Two other ACECs are located just 5 mi (8 km) from the proposed SEZ. These are the Corn Springs ACEC to the south, which includes both historic and prehistoric resources, and the 26 27 Big Marias ACEC to the east. The latter includes a concentration of Native American cultural resources including the Blythe Intaglios, prehistoric trails, and other archaeological sites. 28 29 Approximately 12 mi (19 km) to the north is the Patton's Iron Mountain Divisional Camp 30 ACEC, a site representing the importance of military history in the region (BLM 1999; 2008). 31

31 32

33 34

National Register of Historic Places

There are no historic properties listed in the NRHP within the SEZ; however, there are at least six NRHP-listed sites located within 5 mi (8 km) of the SEZ: McCoy Spring Archaeological Site, Corn Springs, the Gus Lederer Site, the North Chuckwalla Mountains Petroglyph District, the North Chuckwalla Quarry District, and the Blythe Intaglios. Other sites listed in the NRHP within the vicinity of the Riverside SEZ include archaeological sites CA-RIV-504 and CA-RIV-773.

41

Camp Coxcomb, mentioned in Section 9.4.17.1.3 and CA-RIV-1172, are two DTC/C AMA-associated sites that have high integrity and substantial remains, suggesting that they are
 eligible for listing in the NRHP. Several of the other camps and maneuver areas may be eligible
 for NRHP inclusion; however, more research needs to be conducted to determine their eligibility.
 Also considered potentially eligible is the Contractor's General Hospital, located north of Desert

Center near the Eagle Mountains. This was a hospital created by Dr. Sidney Garfield in service
 to the workers on the CRA. Other potentially eligible sites in the vicinity of the SEZ include
 Wiley's Well Road, an offshoot of the Bradshaw Trail used between 1862 and 1877, the Blythe Eagle Mountain 161-kV Transmission Line built in 1855, and the Blythe Intake Landmark 948.

9.4.17.2 Impacts

9 Direct impacts on significant cultural resources could occur in the proposed Riverside 10 East SEZ; however, as stated in Section 9.4.17.1, further investigation is needed in a number of areas. A cultural resource survey of the entire APE of a proposed project would first need to be 11 12 conducted to identify archaeological sites, historic structures and features, and traditional cultural 13 properties, and an evaluation would need to follow to determine whether any are eligible for listing in the NRHP. The Riverside East area was regularly traversed in prehistoric and 14 ethnohistoric times with trail networks ultimately connecting the Colorado River with Lake 15 16 Cahuilla and the Pacific Coast. Archaeological sites and traditional cultural properties are likely abundant along these networks, and the trails themselves are considered important properties. 17 Activities associated with the WWII DTC were also prominent in the valley and physical 18 19 remnants of those activities are present within the SEZ. Possible impacts from solar energy 20 development on cultural resources that are encountered within the Riverside East SEZ or along 21 related ROWs, as well as general mitigation measures, are described in more detail in 22 Section 5.15. Impacts would be minimized through the implementation of required 23 programmatic design features described in Appendix A, Section A.2.2. Programmatic design 24 features assume that the necessary surveys, evaluations, and consultations will occur. 25 26 Programmatic design features to reduce water runoff and sedimentation would reduce the 27 likelihood of indirect impacts on cultural resources resulting from erosion outside of the SEZ 28 boundary (including along ROWs). Indirect impacts on cultural resources through vandalism or

boundary (including along ROWs). Indirect impacts on cultural resources through vandalism or
 theft are possible, given the large size of the SEZ and its accessibility, as well as its proximity to
 several NRHP-listed historic properties, eligible archaeological sites, areas of significance to
 Tribes and historic resources associated with the DTC/C-AMA.

- No new access roads or transmission lines have been assessed for the proposed Riverside
 East SEZ, assuming existing corridors would be used; impacts on cultural resources related to
 the creation of new corridors would be evaluated at the project-specific level if new road or
 transmission construction or line upgrades are to occur.
- 37

6 7

8

38 Because of the interconnectedness of the landscape in Native American cosmology, a 39 change in one part affects the whole, thus damage to one part of the sacred landscape would 40 affect the entire network. The proposed Riverside East SEZ includes the southern end of the Salt Song Trail and a section of the northern branch of the Cocomaricopa Trail. Since visible 41 42 segments tend to follow the shoulders and tops of ridge systems, it is likely that they will not 43 be directly impacted by the development of solar facilities. However, Native Americans have 44 expressed concern over the visual impacts of development on segments of those trails that have religious importance (Halmo 2003). Development that is visible from the trails may be 45 considered intrusive. The proposed Riverside East SEZ is not pristine wilderness. It is crossed 46
1 and bordered by a major interstate highway, and is scarred by tank tracks dating from WWII.

- However, the construction of an extensive solar energy facility would very likely have more
 visual impact on the landscape than already exists.
- 4 5 Native Americans have also expressed concern over other impacts likely to accompany 6 development (Halmo 2003). The presence of an industrial facility and the associated increase in 7 traffic and workers are likely to have a negative impact on the qualities that render a site sacred. 8 An increase in the number of people in the area would increase the potential for damage to 9 panels of rock art and the disturbance of burials and archaeological sites. While the development 10 of the Riverside East SEZ would necessarily increase the number of people coming to and working in the SEZ, this impact should be greatest during the construction and decommissioning 11 12 phases of a facility. The operation of a solar facility would require fewer personnel 13 (see Section 9.4.19.2.2).
- 14
- 15

22

29

30

31

32 33

16 17

9.4.17.3 SEZ-Specific Design Features and Design Feature Effectiveness

Programmatic design features to mitigate adverse impacts on significant cultural resources, such as avoidance of significant sites and features, cultural awareness training for the workforce, and measures for addressing possible looting/vandalism issues through formalized agreement documents, are provided in Appendix A, Section A.2.2.

SEZ-specific design features would be determined in consultation with the California
 SHPO and affected Tribes. Consultation efforts should include discussions on significant
 archaeological sites and traditional cultural properties and on sacred sites and trails, such as the
 Salt Song Trail, within or with views of the proposed SEZ. SEZ-specific design features could
 include the following:

- Significant resources clustered in specific areas, such as those in the vicinity of Palen and Ford Dry Lakes, focused DTC/C-AMA activity areas that retain sufficient integrity, and Native American trails evident in the desert pavement should be avoided.
- Troops in training for WWII often used the same locations that Native
 Americans did for similar purposes (CSRI 1987). Any excavation of historic
 sites should take into consideration the potential for the co-location of
 prehistoric and ethnohistoric components.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	<i>This page intentionally left blank.</i>
14	
15	

9.4.18 Native American Concerns

3 As discussed in Section 9.4.17, many Native Americans tend to view their environment 4 holistically and share many environmental and socioeconomic concerns with other ethnic groups. 5 For a discussion of issues of possible Native American concern shared with the population as a 6 whole, several sections in this PEIS should be consulted. General topics of concern are addressed 7 in Section 4.16. Specifically for the proposed Riverside East SEZ, Section 9.4.17 discusses 8 archaeological sites, structures, landscapes, trails, and traditional cultural properties; 9 Section 9.4.8 discusses mineral resources; Section 9.4.9.1.3 discusses water rights and water use; 10 Section 9.4.10 discusses plant species; Section 9.4.11 discusses wildlife species, including wildlife migration patterns; Section 9.4.13 discusses air quality; Section 9.4.14 discusses visual 11 12 resources: Sections 9.4.19 and 9.4.20 discuss socioeconomics and environmental justice, 13 respectively; and issues of human health and safety are discussed in Section 5.21. This section 14 focuses on concerns that are specific to Native Americans and to which Native Americans bring 15 a distinct perspective. 16 17 The NAHC has been consulted to determine which Tribes have a traditional association

18 with the California SEZs (Singleton 2010). All federally recognized Tribes with traditional ties 19 to the proposed Riverside East SEZ have been contacted so that they could identify their 20 concerns regarding solar energy development. Because Tribal land claims are overlapping and 21 because conflicts among the Tribes and with Euro-Americans resulted in the dispersal of many 22 of the original land occupants, contacts have been initiated over a wide area with Tribes that 23 could include descendants of the indigenous inhabitants of the area. Table 9.4.18-1 lists the 24 Tribes contacted with traditional ties to the SEZs in southeastern California. Appendix K lists all 25 federally recognized Tribes contacted for this PEIS.

26

1

2

The concerns of Native Americans, including the Serrano, Cahuilla, Quechan,
Mohave and Chemehuevi, over other energy development projects in the region also have been
documented and are summarized in the next section. These comments provide important insights
into their concerns over energy development in the area.

31 32

33

34

9.4.18.1 Affected Environment

35 As discussed in Section 9.4.17.1.2, the territorial boundaries of the Tribes who inhabited 36 the Colorado Desert appear to have been fluid over time. At times they overlapped, and 37 resources were shared where abundant. The Riverside East SEZ may well have been an 38 intermittent joint use area (Knack 1981), lying between the home ranges of the Tribes in the 39 region, but occasionally used by all. The Tribal Traditional Use Area boundaries considered here 40 are those presented by the Tribes themselves to the Indian Claims Commission in the 1950s. 41 While the commission recognized the individual claims for the Chemehuevi, Mohave, and 42 Quechan, most of California, including much of the southeastern part of the state, was judged to 43 be the common territory of the "Indians of California" and is so shown on maps of judicially 44 established Native American land claims (Royster 2008). This category was created by Congress to accommodate the claims of California Native Americans who had lost their identities as 45

Tribe	Location	State
Agua Caliente Band of Cahuilla Indians	Palm Springs	California
Cabazon Band of Cahuilla Mission Indians	Indio	California
Cahuilla Band of Mission Indians	Anza	California
Campo Kumeyaay Nation	Campo	California
Chemehuevi Indian Tribe	Havasu Lake	California
Colorado River Indian Tribes	Parker	Arizona
Ewiiaapaayp Band of Kumeyaay Indians	Alpine	California
Fort Mojave Indian Tribe	Needles	California
La Posta Band of Kumeyaay Indians	Boulevard	California
Los Coyotes Band of Cahuilla & Cupeno Indians	Warm Springs	California
Manzanita Band of Kumeyaay Indians	Boulevard	California
Morongo Band of Mission Indians	Banning	California
Quechan Indian Tribe of the Fort Yuma Reservation	Yuma	Arizona
Salt River Pima-Maricopa Indian Community	Scottsdale	Arizona
San Manuel Band of Mission Indians	Patton	California
Soboba Band of Luiseño Indians	San Jacinto	California
Sycuan Band of the Kumeyaay Nation	El Cajon	California
Torres-Martinez Desert Cahuilla Indians	Thermal	California
Twentynine Palms Band of Mission Indians	Coachella	California
Viejas Band of Kumeyaay Indians	Alpine	California

TABLE 9.4.18-1 Federally Recognized Tribes with Traditional Ties to the Southeastern California SEZs

1 2

3 distinct tribes, bands, or villages due to the arrival and policies of Euro-Americans (Indian 4 Claims Commission 1958). The claims of the Serrano and Cahuilla, and much of the land 5 claimed by the Mohave and Quechan, lie within the Indians of California territory, but were also 6 presented individually to the commission. In their claims, Tribes appear to have often taken into 7 consideration the claims made by neighboring Tribes. The Mohave submitted two claims. One 8 claim, accepted by the commission, was restricted to areas along the Colorado River, the other, 9 reflecting their view that they were the original inhabitants of southeastern California and all 10 others latecomers, includes much of Chemehuevi and Indians of California territory also claimed by the Serrano and the Cahuilla (Indian Claims Commission 1958; CSRI 2002). The next section 11 12 presents territorial claims relevant to the Riverside East SEZ.

13

14

- 15 16
- 17 18

Serrano

9.4.18.1.1 Territorial Boundaries

Although the primary traditional homeland of the Serrano appears to have been the
San Bernardino Mountains west of the SEZ, the Serrano claim includes most of the Riverside
East SEZ north of I-10. Their claim extends from Cadiz, California, southeast to a point in the
Big Marias 12 mi (19 km) west of the Colorado River, then parallels the Colorado River

1 southward to a point 12 mi (19 km) due west of Blythe and extends westward to Hayfield

Reservoir on the CRA. The Halchidhoma Trail appears to have formed the southern boundary of
 their claim in this part of the desert (CSRI 2002). Serrano descendants live primarily on the

4 Morongo and San Manuel Reservations, where they have mixed with the Cahuilla.

5 6

7

8

Cahuilla

9 The Coachella Valley, southwest of the Riverside East SEZ, lies at the heart of Cahuilla 10 territory, southwest of the Riverside East SEZ. However, the northern boundary of their claim 11 matches the southern boundary of the Serrano. It extends eastward to a point 12 mi (19 km) west 12 of Blythe then southward paralleling the Colorado River to a point 3 mi (5 km) south of the 13 Riverside County line. It thus includes much of the southern portion of Chuckwalla Valley and 14 the southeastern lobe of the SEZ (CRSI 2002). Cahuilla descendants may be found on several 15 small reservations in Southern California.

16

17 18

19

Quechan

20 While the heart of Quechan territory lies at the confluence of the Gila and Colorado 21 Rivers, well to the south of the SEZ, they have in the past occupied the banks of the Colorado 22 River as far north as Blythe. Their territorial claim includes the eastern half of the SEZ. As 23 presented to the Indian Claims Commission, their eastern boundary extended along the crest of 24 the mountains east of the Colorado River as far north as Blythe, where it jogs westward to the 25 channel of the Colorado River, following the channel northward to a point just north of the 26 Riverside Mountains. It thus includes much of the Xam Kwatcan Trail. From the Riverside 27 Mountains it extends southwest to the Little Maria Mountains, then south to the McCoy 28 Mountains and southwest to the Chuckwalla Mountains (Indian Claims Commission 1958). The 29 claim overlaps with those of the Cahuilla, Serrano, and Mohave. Quechan descendants occupy 30 the Fort Yuma Indian Reservation in Arizona and California.

- 31 32
- Mohave
- 33 34

The territory claimed by the Mohave lies primarily to the east of the SEZ. They claimed lands on both banks of the Colorado River to the crests of the mountains as far south as Blythe and inland north of a line extending from the Whipple Mountains to the Turtle, the Granite Mountains, the Eagle Mountains, and the San Bernardino Mountains, thus skirting the basins where the SEZ is located (CSRI 2002). Mohave descendants occupy the Fort Mojave Indian Reservation near Needles, California, and may be found on the reservation of the Colorado River Indian Tribes.

- 42
- 43
- 44

1

Chemehuevi

The Chemhuevi were northern neighbors. Their territorial claims extend only as far south as the Granite Mountains and the Little and Big Maria Mountains. As neighbors they are likely to have traversed this joint-use zone as well (CSRI 2002). Chemehuevi descendants occupy the Chemehuevi Reservation and share the Colorado River Indian Tribes Reservation with the Mohave and other Tribes.

Halchidhoma

12 The Halchidhoma were forced off their lands along the Colorado River by neighboring 13 Tribes in about 1827, before the United States acquired the area from Mexico. They probably 14 occupied territory around Blythe similar in extent to that claimed by the Mohave in that area. 15 Their descendants have been integrated into the Maricopa Tribe and may be found on the 16 Salt River Pima-Maricopa Indian Reservation in Arizona (Harwell and Kelly 1983).

17 18

19

20

9.4.18.1.2 Plant Resources

21 Native Americans tend to view the whole of the landscape as imbued with a lifeforce, 22 including features and objects viewed by Euro-American cultures as inanimate. The importance 23 of landscapes, geophysical features, trails, rock art, and archaeological sites is discussed in 24 Section 9.4.17. To the extent that they are religiously significant, it is important to the Tribes that 25 they retain access to such features located on federal land as required by AIRFA. This section focuses on other Native American concerns, including those that have ecological as well as 26 27 cultural components. For many Native Americans, the taking of game or the gathering of plants 28 or other natural resources may have been seen as both a sacred and secular act 29 (Stoffle et al. 1990).

30

31 The traditional Native American subsistence base in the Colorado Desert was a mixture 32 of floodplain agriculture and hunting and gathering. The proportion of farming to gathering 33 varied with the Tribe and the land they occupied. The Riverside East SEZ does not lie within the 34 heartland of any Tribe and is likely to have been used for hunting and gathering, as the campsites 35 and agave roasting pits found throughout Chuckwalla Valley attest. Traditionally, Native 36 American Tribes in the Colorado Desert practiced a seasonal round in harvesting naturally 37 occurring plant resources. For example, agave heads are harvested in early spring, mesquite 38 produced a summer crop, and fall might include harvests of pine nuts or acorns at higher 39 elevations (Lightfoot and Parish 2009). Proximity to valuable plant resources and water were 40 important factors in determining where Native Americans chose to build their villages and 41 camps. Native Americans commenting on nearby development projects have voiced concern 42 over the loss of culturally important plants used for food, medicine, and ritual purposes and for 43 making tools, implements, and structures. The plant communities observed or likely to be present 44 at the Riverside East SEZ are discussed in Section 9.4.10. Most of the valley bottoms support a 45 combination of Sonora-Mojave Creosotebush-White Bursage Desert Scrub, and North American 46 Warm Desert Wash plant communities. There are some areas of North American Warm Desert

Pavement near Palen Dry Lake, while Ford Dry Lake is classified as North American Warm Desert Playa. There are a few areas of North American Warm Desert Active and Stabilized Dune (NatureServe 2008). While these communities appear sparse most of the year, seasonal rains often result in an explosion of ephemeral herbaceous species. Native Americans commenting on the area for a previous project found that vegetation more luxuriant on the western end of the Chuckwalla Basin and more likely to attract game (CSRI 1987).

8 Native American populations have traditionally made use of hundreds of native plants.
9 Table 9.4.18.1-1 lists plants often mentioned as important by Native Americans that were either
10 observed at the Riverside East SEZ or are possible members of the cover-type plant communities

- 11
- 12

Common Name	Scientific Name	Status
Food		
Beavertail prickly pear cactus	Opuntia basilaris	Possible
Buckwheat	Eriogonum spp.	Possible
Cat claw	Acacia greggii	Possible
Cholla cactus	Cylindropuntia spp.	Observed
Desert almond	Prunus fasciculatum	Possible
Honey mesquite	Prosopis glandolosa	Observed
Palo Verde	Cercidium floridum	Observed
Saltbush	Atriplex spp.	Possible
Smoke tree/indigo bush	Psorothamnus spinosus	Observed
Sumac	Rhus spp.	Possible
Medicine		
Creosotebush	Larrea tridentata	Observed
Greasewood	Sacarbatus vermiculatus	Possible
Mormon tea	Enhedra nevadensis	Possible
Sagebrush	Artemisia spp.	Possible
Ritual		
Ironwood	Olneya tesota	Observed
Raw Material		
Desert-willow	Chilopsis linaeris	Observed
Unspecified		
Boxthorn	Lycium sp	Possible
Brittlebush	<i>Opuntia</i> sp	Observed
Burrowbush	Ambrosia dumosa	Observed
Cheesebush	Hymenoclea salsola	Observed
Ocotillo	Fouquieria splendnens	Possible

TABLE 9.4.18.1-1Plant Species Important to NativeAmericans Observed or Likely To Be Present in the ProposedRiverside East SEZ

Sources: Field visit; Lightfoot and Parish (2009); and NatureServe (2008).

1 identified in the SEZ. The plants are grouped by use category, but a plant is not necessarily 2 confined to one use. These plants are the dominant species; however, other plants important to 3 Native Americans could occur in the SEZ, depending on localized conditions and the season. 4 Overall, creosotebush dominates the SEZ, while ironwood and mesquite occur in the washes. 5 Mesquite was among the most important food plants. Its long, bean-like pods were harvested in 6 the summer, could be stored, and were widely traded. Groves were managed by burning. Its 7 blossoms are edible, and the cicadas and grasshoppers that live in the groves were collected and 8 eaten by the Cahuilla. Mesquite trunks served as a source of wood, fiber from its inner bark was 9 made into string, its thorns were used for tattooing, and its gum was used as an adhesive, a 10 cleansing agent, and medicine. Saltbush and buckwheat seeds were harvested, processed, and eaten (Lightfoot and Parish 2009). 11 12

The proposed Riverside East SEZ includes other plants useful to Native Americans. The leaves of the dominant creosotebush were widely made into tea for medicinal purposes. The trunks of greasewood were used in construction, while its leaves and branches were used in curing, as was a tea made from *Ephedra viridis*, or Mormon tea. Desert-willow was used in house construction and for making bows (Lightfoot and Parish 2009), while ironwood was considered sacred by the Cahuilla (Bean et al. 1978).

19 20

21

22

9.4.18.1.3 Other Resources

23 The proposed Riverside East SEZ may also have been a hunting ground. The mountains 24 surrounding the SEZ provide habitat for the reclusive burro deer, a desert-adapted variety of 25 mule deer, and desert bighorn sheep. Traditionally, deer have been an important source of both food and materials, such as bone, sinew, and hide, used to make a variety of implements. Scat 26 27 and tracks of both burrow deer and bighorn sheep have been observed seasonally within the 28 SEZ (Chaney-Davis et al. 2010). While big game was highly prized, smaller animals such as 29 black-tailed jackrabbits and desert cottontail, both present in the SEZ, traditionally provided 30 a larger proportion of the protein in Native American diets and were an important source for making blankets and clothing (Lightfoot and Parrish 2009). Animals traditionally hunted by 31 32 Native Americans are listed in Table 9.4.18.1-2.

Mineral resources important to Native Americans in the Colorado Desert include clay suitable for making pottery, stone suitable for the manufacture of both cutting and grinding tools, hematite for pigment, and quartz crystals considered to have healing properties (Halmo 2003). The dry lakebeds may have served as a source of clay, while quartz crystals have been recorded during cultural resource surveys in the area (Eckhardt and Wilson 2009).

39

33

As long-time desert dwellers, Native Americans have a great appreciation for the importance of water in a desert environment. They have expressed concern over the use and availability of water for solar energy installations (Halmo 2003; Jackson 2009). One of the main concerns over past industrial projects planned for the region was the contamination of ground water, which they see as ultimately flowing to the Colorado River and affecting the basin as a whole (CSRI 1987).

Draft Solar PEIS

Common Name	Scientific Name	Status
Mammals		
Badger	Taxidea taxus	All year
Bighorn sheep	Ovis canadensis	All year
Black-tailed jackrabbit	Lepus californicus	All year
Bobcat	Lynx rufus	All year
Coyote	Canis latrans	All year
Desert cottontail	Silvilagus audubonii	All year
Mule deer	Odocoileus hemionus	Seasonally
Squirrel	Spermophilus sp. and Ammospermophilus sp.	All year
Wood rat	Neotoma spp.	All year
Birds		
Gambel's quail	Callipepla gambelii	All year
Doves		-
White-winged dove	Zenaida asiatica	Summer
Mourning dove	Zenaida macrocura	All year
Reptiles		
Desert tortoise	Gopherus agassizii	All year
Rattlesnake	Crotalus spp.	All year

TABLE 9.4.18.1-2Animal Species Used by Native Americans Whose RangeIncludes the Proposed Riverside East SEZ

Sources: Lightfoot and Parrish (2009); Fowler (1986); Stewart (1983).

1 2

Some Tribes share with the populace as a whole concerns over potential danger from
electromagnetic fields. In traditional Cahuilla culture, electricity, both natural (lightning) and
artificially generated, is considered dangerous and something to be avoided (Bean et al. 1978).
They may have concerns over a facility that produces electricity and its associated transmission
system.

In addition, Native Americans have expressed concern over ecological segmentation, that
is, development that fragments animal habitat and does not provide corridors for movement.
They would prefer solar energy development take place on land that has already been disturbed,
such as abandoned farmland, rather than on undisturbed ground (Jackson 2009).

- 13
- 14 15

16

9.4.18.2 Impacts

To date, no comments have been received from the Tribes specifically referencing the proposed Riverside East SEZ. However, the Soboba Band of Luiseño Indians, based on their traditional ties to the Cahuilla, find some of the California SEZs to be within their Tribal Traditional Use Area and consider part of the area to be highly sensitive (Ontiveros 2010). The Agua Caliente Band of Cahuilla Indians, commenting on the fast-track solar facilities proposed for within the SEZ, considers much of the proposed Riverside East SEZ to be within their

1 Traditional Use Area. They are concerned about adverse effects on historical resources including traditional cultural places, sacred places, gathering places, trails, and their associated cultural 2 3 landscapes (Garcia-Tuck 2010). In a response letter, the Ouechan Indian Tribe of Fort Yuma 4 indicates that some of the SEZs lie within their Tribal Traditional Use Area. They stress the 5 importance of evaluating impacts on landscapes as a whole. Because trails have both physical 6 and spiritual components, from their perspective the intrusion of industrial development nearby 7 would have negative effects on trails (Jackson 2009). 8 9 In the past, the Chemehuevi have expressed concerns over the Salt Song Trail, which passes down Palen Valley and through the SEZ (Ridder 1998; Halmo 2003), as has the NALC, 10 an inter-tribal organization (Russo 2009). Even if solar energy development within the western 11 12 portions of the SEZ avoids the trail, facilities would be visible from the trail and would present a 13 visual intrusion.

14

The impacts that would be expected from solar energy development within the proposed
 Riverside East SEZ on resources important to Native Americans fall into two major categories:
 impacts on the landscape and impacts on discrete localized resources.

18

19 Potential landscape-scale impacts are those caused by the presence of an industrial 20 facility within a sacred landscape that includes sacred mountains and other geophysical features 21 tied together by a network of culturally important trails. Impacts may be visual-the intrusion of 22 an industrial feature in sacred space; audible-noise from the construction, operation, or 23 decommissioning of a facility detracting from the traditional cultural values of the site; or 24 demographic—the presence of a larger number of outsiders in the area that would increase the 25 chance that the sacredness of the area would be degraded by more foot and motorized traffic. As consultation with the Tribes continues and project-specific analyses are undertaken, it is possible 26 27 that Native Americans will express concerns over potential visual and noise effects of solar 28 energy development within the SEZ on the landscape, such as on the Big Maria, Coxcomb, and 29 Eagle Mountains, physical features such as Alligator Rock and Black Rock, on the Salt Song 30 Trail, and on shrines and sacred places (see also Section 9.4.17).

31

32 Localized effects could occur both within the SEZ and in adjacent areas. Within the 33 SEZ these effects would include destroying or degrading important plant resources, destroying 34 the habitat of and impeding the movement of culturally important animal species, destroying 35 archaeological sites and burials, and degrading or destroying trails and sacred places. Known resources of this type are scattered throughout the SEZ. Any ground-disturbing activity 36 37 associated with the development within the SEZ has the potential for destruction of localized 38 resources. Since solar energy facilities cover large tracts of ground, even taking into account the 39 implementation of programmatic design features, it is unlikely that avoidance of all resources 40 would be possible. Programmatic design features (see Appendix A, Section A.2.2) assume that the necessary cultural surveys, site evaluations, and Tribal consultations will occur. 41 42

Implementation of programmatic design features, as discussed in Appendix A,
Section A.2.2, should eliminate impacts on Tribes' reserved water rights and the potential for
groundwater contamination issues.

46

Whether there are any issues relative to socioeconomics, environmental justice, or health and safety relative to Native American populations is yet to be determined.

3 4 5 9.4.18.3 SEZ-Specific Design Features and Design Feature Effectiveness 6 7 Programmatic design features to mitigate impacts of potential concern to Native 8 Americans, such as avoidance of sacred sites, water sources, and tribally important plant and 9 animal species, are provided in Appendix A, Section A.2.2. 10 The development of solar energy facilities in the state of California requires developers to 11 12 follow CEC guidelines for interacting with Native American in addition to federal requirements 13 (CEC 2009c). Developers must obtain information from California's NAHC on the presence of Native American sacred sites in the project vicinity and a list of Native Americans who want to 14 be contacted about proposed projects in the region. Table 9.4.18.3-1 lists the tribes recommended 15 16 for contact by the NAHC. 17 18 The need for and nature of SEZ-specific design features regarding potential issues of 19 concern would be determined during government-to-government consultation with affected 20 Tribes. 21

The Agua Caliente consider the cumulative effects of the development of solar energy facilities in and around the SEZ on Tribally important resources to be "immeasurable and unmitigable" and wishes to be involved in the process of determining project significance (Garcia-Tuck 2010).

26

1

2

27

TABLE 9.4.18.3-1Federally Recognized Tribes Listed by the NAHC toContact Regarding the Riverside East SEZ

Tribe	Location	State
Agua Caliente Band of Cahuilla Indians	Palm Springs	California
Chemehuevi Indian Tribe	Havasu Lake	California
Colorado River Indian Tribes	Parker	Arizona
Cocopah Indian Tribe	Somerton	Arizona
Fort Mojave Indian Tribe	Needles	California
Morongo Band of Mission Indians	Banning	California
Quechan Indian Tribe of the Fort Yuma Reservation	Yuma	Arizona
San Manuel Band of Mission Indians	Patton	California
Torres-Martinez Desert Cahuilla Indians	Thermal	California
Twentynine Palms Band of Mission Indians	Coachella	California

Source: Singleton (2010).

1 The Quechan Tribe and the Soboba Band of Luiseño Indians have requested that they be 2 consulted at the inception of any solar energy project that would affect resources important to 3 them. The Quechan also suggest that the clustering of large solar energy facilities be avoided, 4 that priority for development be given to lands that have already been disturbed by agricultural 5 or military use, and that the feasibility of placing solar collectors on existing structures be 6 considered, thus minimizing or avoiding the use of undisturbed land (Jackson 2009).

7 8 The BLM has actively sought the participation of the Tribes of southeastern California in 9 identifying cultural resources important to Native Americans that would be adversely affected by the construction and operation of three fast-track solar facilities that lie within the SEZ. Tribes 10 have participated in the development of programmatic agreements for each of the proposed 11 12 Blythe, Genesis, and Palen facilities (see Table 9.4.18.3-2). Under the terms of these agreements, 13 the Tribes are afforded the opportunity to review and comment on BLM's findings of effect on cultural resources important to the Tribes and participate in the development of Historic 14 15 Properties Treatment Plans, Historic Properties Management Plans, and monitoring and 16 discovery plans in order to ensure the resolution of identified adverse effects on cultural 17 properties important to the Tribes through avoidance, minimization, or mitigation. These plans will include provisions for Tribal cultural specialists to monitor the construction and operation of 18 19 the facilities for adverse effects on cultural properties (BLM and CA SHPO 2010a-c).

Mitigation of impacts on archaeological sites and traditional cultural properties is
 discussed in Section 9.4.17.3, in addition to programmatic design features for historic properties
 discussed in Appendix A, Section A.2.2.

24 25

20

Tribe	Blythe	Genesis	Palen
Agua Caliente Band of Cahuilla Indians	×	×	×
Augustine Band of Mission Indians	×	×	×
Cabazon Band of Mission Indians	×	×	-
Chemehuevi Indian Tribe	×	×	×
Cocopah Indian Tribe	×	×	-
Colorado River Indian Tribes	×	×	×
Fort Mojave Indian Tribe	×	×	×
Morongo Band of Mission Indians	×	×	×
Quechan Indian Tribe of the Fort Yuma Reservation	×	×	×
Ramona Band of Mission Indians	-	×	×
San Manuel Band of Mission Indians	×	×	×
Soboba Band of Luiseño Indians	-	×	-
Torres-Martinez Desert Cahuilla Indians	×	×	×
Twentynine Palms Band of Mission Indians	×	×	×

TABLE 9.4.18.3-2Federally Recognized Tribes Invited to Concur on ProgrammaticAgreements for the Fast-Track Solar Energy Projects within the Proposed RiversideEast SEZ

Source: BLM and California SHPO (2010a-c).

9.4.19 Socioeconomics

9.4.19.1 Affected Environment

6 This section describes current socioeconomic conditions and local community services 7 within the ROI surrounding the proposed Riverside East SEZ. The ROI is a one-county area 8 consisting of Riverside County in California. It encompasses the area in which workers are 9 expected to spend most of their salaries and in which a portion of site purchases and nonpayroll 10 expenditures from the construction, operation, and decommissioning phases of the proposed SEZ 11 facility are expected to take place.

9.4.19.1.1 ROI Employment

In 2008, employment in the ROI stood at 839,878 (Table 9.4.19.1-1). Over the period
17 1999 to 2008, the annual average employment growth rate in Riverside County was 2.5%,
18 slightly higher than the average rate for California (0.9%).

In 2006, the service sector provided the highest percentage of employment in the
ROI at 44.3%, followed by wholesale and retail trade with 20.4 % (Table 9.4.19.1-2). Smaller
employment shares were held by construction (13.8%) and manufacturing (9.9%).

24 25

26

1

2 3 4

5

12 13 14

15

19

9.4.19.1.2 ROI Unemployment

Over the period 1999 to 2008, the average rate in Riverside County was 6.0%, slightly higher than the average rate for California (5.8%) (Table 9.4.19.1-3). The unemployment rate for the first 10 months of 2009 (13.8%), contrasts with the rate for 2008 as a whole (8.6%). The average rate for California as a whole (11.6%) was also higher during this period than the corresponding average rates for 2008.

32 33

TABLE 9.4.19.1-1 ROI Employment in the ProposedRiverside East SEZ

Location	1999	2008	Average Annual Growth Rate, 1999–2008 (%)
Riverside County	653,552	839,878	2.5
California	15,566,900	17,059,574	0.9

Sources: U.S Department of Labor (2009a,b).

TABLE 9.4.19.1-2	ROI Emplo	oyment in t	he
Proposed Riversid	e East SEZ,	by Sector,	2006 ^a

Industry	Riverside County	% of Total
Agriculture ^a	17,064	3.0
Mining	505	0.1
Construction	78,556	13.8
Manufacturing	56,582	9.9
Transportation and public utilities	21,835	3.8
Wholesale and retail trade	116,343	20.4
Finance, insurance, and real estate	26,964	4.7
Services	252,847	44.3
Other	89	0.0
Total	570,468	

^a Agricultural employment includes 2007 data for hired farmworkers.

Sources: U.S. Bureau of the Census (2009a); USDA (2009).

TABLE 9.4.19.1-3ROI UnemploymentRates (%) for the Proposed RiversideEast SEZ

Location	1999–2008	2008	2009 ^a
Riverside County	6.0%	8.6%	13.8%
California	5.8%	7.2%	11.6%

^a Rates for 2009 are the average for January through May.

Sources: U.S. Department of Labor (2009a-c).

3 4

5

6

9.4.19.1.3 ROI Urban Population

The population of Riverside County in 2006 to 2008 was 68% urban, with the majority of urban areas located in the western portion of the county. The largest urban area, Riverside, had an estimated 2008 population of 293,207; other large cities in the western portion of the county in include Moreno Valley (188,676) and Corona (148,336) (Table 9.4.19.1-4). In addition, there are eight cities in the county with a 2008 population between 50,000 and 99,999 persons. The

	Population		Median	Household Inc	ome (\$ 2008)	
City	2000	2008	Average Annual Growth Rate, 2000–2008 (%)	1999	2006–2008	Average Annual Growth Rate, 1999 and 2006–2008 (%) ^a
Dimensida	255 166	202 207	1.0	52 (20	56 905	0.6
Riverside	255,166	293,207	1.8	53,620	56,805	0.6
Moreno Valley	142,381	188,676	3.6	61,101	55,178	-1.1
Corona	124,966	148,336	2.2	/6,/55	/8,120	0.2
Murietta	44,282	97,935	10.4	/8,424	79,135	0.1
l emecula	57,716	95,853	6.5	76,628	77,394	0.1
Indio	49,116	83,475	6.9	44,579	53,824	2.1
Hemet	58,812	70,821	2.3	34,556	34,974	0.1
Perris	36,189	55,150	5.4	45,774	53,442	1.7
Cathedral City	42,647	51,790	2.5	50,068	42,026	-1.9
Palm Desert	41,155	50,490	2.6	62,208	55,218	-1.3
Lake Elsinore	28,928	50,490	7.1	53,926	58,496	0.9
La Quinta	23,694	43,229	7.8	70,237	78,898	1.3
Coachella	22,724	39,014	7.0	36,810	40,463	1.1
San Jacinto	23,779	37,475	5.9	39,433	47,127	2.0
Norco	24,157	26,455	1.1	80,537	78,141	-0.3
Desert Hot Springs	16,582	23,996	4.7	33,459	38,465	1.6
Blythe	12,155	21,650	7.5	45,480	37,937	-2.0
Rancho Mirage	13,249	16,651	2.9	77,027	NA ^b	NA
Canyon Lake	9,952	11,064	1.3	90,263	NA	NA
Calimesa	7,139	7,478	0.6	48,731	NA	NA
Indian Wells	3,816	5,113	3.7	121,008	NA	NA

TABLE 9.4.19.1-4ROI Urban Population and Income for the Proposed RiversideEast SEZ

^a Data are averages for the period 2006 to 2008.

^b NA = data not available.

Source: U.S. Bureau of the Census (2009b–d).

1 2 3 4 5 6 7 8 9 10

11 12 majority of these cities are part of the larger urban region that includes Los Angeles, Riverside and San Bernardino, and most are more than 100 mi (161 km) from the site of the proposed SEZ.

Population growth rates among the larger cities in the western part of the county have varied over the period 2000 and 2008. Murietta grew at an annual rate of 10.4% during this period; higher than average growth was also experienced in Lake Elsinore (7.1%), Temecula (6.5%) and San Jacinto (5.9%). The cities of Hemet (2.3%), Corona (2.2%), Riverside (1.8%) all experienced lower growth rates between 2000 and 2008.

A smaller group of cities is about 70 mi (113 km) from the SEZ site, including Indio (83,475), Cathedral City (51,790), Palm Desert (50,490), Coachella (39,014), La Quinta (43,229), and Desert Hot Springs (23,996). Population growth in these cities between 2000 and 2008 has been relatively high: La Quinta (7.8%), Coachella (7.0%), Indio (6.9%), and Desert Hot Springs (4.7%). One city, Blythe (21,650), is located on the eastern border of the county, on the Colorado River, less than 10 mi (16 km) from the proposed SEZ location, and had a relatively high population growth rate (7.5%) between 2000 and 2008.

9 10

11

9.4.19.1.4 ROI Urban Income

Median household incomes varied considerably across cities in the county. A number of cities in the western San Bernardino County—Murietta (\$79,135), Norco (\$78,141), and Temecula (\$77,394)—had median incomes in 2006-2008 that were higher than the average for the state (\$61,154) (Table 9.4.19.1-4). A number of cities in the western portion of the county had relatively low median household incomes, notably, Hemet (\$34,974) and San Jacinto (\$47,127).

18

Among the cities in the western part of the county, median income growth rates between 1999 and 2006 to 2008 were highest in San Jacinto (2.0%) and Perris (1.7%), with annual growth rates of less than 1% elsewhere. Moreno Valley (-1.1%) and Norco (-0.3%) had negative growth rates between 1999 and 2006 to 2008. The average median household income growth rate for the state as a whole over this period was less than 0.1%.

Elsewhere in the county, La Quinta (\$78,898) had a median household income higher
than the state average between 2006 and 2008, while other cities—Palm Desert (\$55,218), Indio
(\$53,824), Cathedral City (\$42,026), Coachella (\$40,463), and Desert Hot Springs (\$38,465)—
had median incomes less than the state average. The median income in Blythe in 2006 to 2008
was \$37,937. Growth rates in these cities over the period 1999 and 2006–2008 varied from 2.1%
in Indio to -2.0% in Blythe.

- 31
- 32
- 33 34

9.4.19.1.5 ROI Population

Table 9.4.19.1-5 presents recent and projected populations in Riverside County and in the state as a whole. Population in the county stood at 2,087,917 in 2008, having grown at an average annual rate of 3.8% since 2000. Population growth in the county was higher than that for California (1.5%) over the same period. The county population is expected to increase to 2,965,113 by 2021 and to 3,085,643 by 2023.

- 40
- 41 42

43

9.4.19.1.6 ROI Income

44 Total personal income in Riverside County stood at \$63.1 billion in 2007 and has grown
45 at an annual average rate of 4.1% over the period 1998 to 2007 (Table 9.4.19.1-6). Per-capita

Location	2000	2009	Average Annual Growth Rate, 2000–2008	2021	2022
Location	2000	2008	(%)	2021	2023
Riverside County	1,559,039	2,087,917	3.8	2,965,113	3,085,643
California	33,871,648	38,129,628	1.5	44,646,420	45,667,413

TABLE 9.4.19.1-5 ROI Population for the Proposed Riverside East SEZ

Sources: U.S. Bureau of the Census (2009e,f); California Department of Finance (2010).

TABLE 9.4.19.1-6ROI Personal Income for theProposed Riverside East SEZ

Location	1998	2007	Average Annual Growth Rate, 1998–2007 (%)
Riverside County			
Total income ^a	42.2	63.1	4.1
Per-capita income	28,886	30,713	0.6
California			
Total income ^a	1,231.7	1,573.6	2.5
Per-capita income	37,339	41,821	1.1

^a Unless indicated otherwise, values are reported in \$ billion 2008.

Sources: U.S. Department of Commerce (2009); U.S. Bureau of Census (2009e,f).

3

1 2

- 4
- income in the county also rose over the same period at a rate of 0.6%, increasing from \$28,886 to
 \$30,713. The personal income growth rate in the county was higher than the state rate (2.5%),

but the per-capita income growth rate was slightly lower in the ROI than for California as awhole (1.1%).

9

- Median household income in the ROI stood at \$58,168 in Riverside County (U.S. Bureauof the Census 2009d).
- 12
- 13
- 14

1 9.4.19.1.7 ROI Housing 2 3 In 2007, more than 754,415 housing units were located in Riverside County 4 (Table 9.4.19.1-7). Owner-occupied units accounted for approximately 69% of the occupied 5 units in the two counties, with rental housing making up 31% of the total. Vacancy rates in 2007 6 were 14.2% in Riverside County, and 6.5% of housing units in Riverside County were used for 7 seasonal or recreational purposes. With an overall vacancy rate of 14.2% in the county, there 8 were 106,972 vacant housing units in 2007, of which 33,280 are estimated to be rental units that 9 would be available to construction workers. There were 38,208 seasonal, recreational, or 10 occasional-use units vacant at the time of the 2000 Census. 11 12 Housing stock in Riverside County grew at an annual rate of 3.7% over the period 13 2000 to 2007, with 169,741 new units added to the existing housing stock (Table 9.4.19.1-7). 14 15 The median value of owner-occupied housing in Riverside County in 2006–2008 was 16 \$380,600 (U.S. Bureau of the Census 2009g). 17 18 19 9.4.19.1.8 ROI Local Government Organizations 20 21 The various local and county government organizations in Riverside County are listed in 22 Table 9.4.19.1-8. In addition, there are 11 tribal governments located in the county; members of 23 other tribal groups are located in the state, but their tribal governments are located in adjacent 24 states. 25 26 27 9.4.19.1.9 ROI Community and Social Services 28 29 This section describes educational, health care, law enforcement, and firefighting 30 resources in the ROL 31 32

Parameter	2000	2007
Riverside County		
Owner-occupied	348,532	446,017
Rental	157,686	201,426
Vacant units	78,456	106,972
Seasonal and recreational use	38,208	NA ^a
Total units	584,674	754,415

TABLE 9.4.19.1-7ROI Housing Characteristicsfor the Proposed Riverside East SEZ

^a NA = data not available.

Sources: U.S. Bureau of the Census (2009h,i).

TABLE 9.4.19.1-8 ROI Local Government Organizations and Social Institutions for the Proposed Riverside East SEZ

	Governments
City	
Blythe	Lake Elsinore
Calimesa	Moreno Valley
Canyon Lake	Murietta
Cathedral City	Norco
Coachella	Palm Desert
Corona	Perris
Desert Hot Springs	Rancho Mirage
Hemet	Riverside
Indian Wells	San Jacinto
Indio	Temecula
La Quinta	
County	
Riverside County	
Tribal	
Agua Caliente Band of Cahuilla Inc	dians of the Agua Caliente Indian Reservation, California
Augustine Band of Cahuilla Mission	n Indians of the Augustine Reservation, California
Cabazon Band of Mission Indians,	California
Cahuilla Band of Mission Indians o	of the Cahuilla Reservation, California
Ione Band of Miwok Indians of Cal	lifornia
Morongo Band of Cahuilla Mission	1 Indians of the Morongo Reservation, California
Pechanga Band of Luiseno Mission	Indians of the Pechanga Reservation, California
Ramona Band or Village of Cahuill	la Mission Indians of California
Santa Rosa Band of Cahuilla Indian	ns, California
Soboba Band of Luiseno Indians, C	California
Torres Martinez Desert Cahuilla Ind	dians, California
Sources: U.S. Bureau of the Census (?	2009b); U.S. Department of Interior (2010).
Schools	
Table 9.4.19.1-9 provides summadices of educational quality—studers per 1,000 population). The studers 1,000 population for the stude 2.1, while the level of service is slightly and the stude of service is slightly and the slightly and t	ary statistics for enrollment and educational staffing dent-teacher ratios and levels of service (number of lent-teacher ratio in Riverside County schools in 20 ightly higher in Riverside County was 9.3.
Health Care	

There were 3,277 physicians in Riverside County in 2007, and the number of doctors per
1,000 population was 1.6 (Table 9.4.19.1-10).

TABLE 9.4.19.1-9ROI School District Data for the Proposed RiversideEast SEZ, 2007

Location	Number of	Number of	Student-Teacher	Level of
	Students	Teachers	Ratio	Service ^a
Riverside County	421,642	19,105	22.1	9.3

^a Number of teachers per 1,000 population.

Source: NCES (2009).

1 2

TABLE 9.4.19.1-10Physicians in the ROI forthe Proposed Riverside East SEZ, 2007

Location	Number of Primary Care Physicians	Level of Service ^a
Riverside County	3,277	1.6

^a Number of physicians per 1,000 population. Source: AMA (2009).

Public Safety

Riverside County has 1,965 officers and would provide law enforcement services to the SEZ (Table 9.4.19.1-11), and currently, there are 2,205 professional firefighters in the. Levels of service of police protection are 1.0 in Riverside County and 1.1 for fire services.

9.4.19.1.10 ROI Social Change

Community social structures and other forms of social organization within the ROI are related to various factors, including historical development, major economic activities and sources of employment, income levels, race and ethnicity, and forms of local political organization. Although an analysis of the character of community social structures is beyond the scope of the current programmatic analysis, project-level NEPA analyses would include a description of ROI social structures, contributing factors, their uniqueness, and consequently, the susceptibility of local communities to various forms of social disruption and social change.

Various energy development studies have suggested that once the annual growth in population is between 5% and 15% in smaller rural communities, alcoholism, depression, suicide, social conflict, divorce, and delinquency would increase, and levels of community satisfaction would deteriorate (BLM 1980, 1983, 1996). Tables 9.4.19.1-12 and 9.4.19.1-13 present data for a number of indicators of social change, including violent crime and property

3 4

Location	Number of Police Officers ^a	Level of Service ^b	Number of Firefighters ^c	Level of Service
-			U	

1.0

2,205

1.1

TABLE 9.4.19.1-11 Public Safety Employment in the ROI

1,965

^a 2007 data.

Riverside County

^b Number per 1,000 population.

^c 2008 data; number does not include volunteers.

Sources: U.S. Department of Justice (2008); Fire Departments Network (2009).

TABLE 9.4.19.1-12 County and ROI Crime Rates in the ROI for the Proposed Riverside East SEZ^a

	Violent C	rime ^b	Property Cr	ime ^c	All Crime	
	Offenses	Rate	Offenses	Rate	Offenses	Rate
Riverside County	7,351	3.5	57,839	27.5	65,190	31.0

^a Rates are the number of crimes per 1,000 population.

^b Violent crime includes murder and non-negligent manslaughter, forcible rape, robbery, and aggravated assault.

^c Property crime includes burglary, larceny, theft, motor vehicle theft, and arson.

Sources: U.S. Department of Justice (2009a, b).

5 crime rates, alcoholism and illicit drug use, and metal health and divorce, that might be used to 6 indicate social change.

8 Violent crime in Riverside County in 2007 stood at 3.5 per 1,000 population
9 (Table 9.4.19.1-12), while the property-related crime rate was 27.5, producing an overall
10 crime rate of 31.0.

Other measures of social change—alcoholism, illicit drug use, and mental health—are not available at the county level, and thus are presented for the SAMHSA region in which the county is located (Table 9.4.19.1-13).

15 16

17

18

11

3 4

7

9.4.19.1.11 ROI Recreation

19 There are various areas in the vicinity of the proposed SEZ that are used for recreational 20 purposes, with natural, ecological, and cultural resources in the ROI attracting visitors for a

TABLE 9.4.19.1-13 Alcoholism, Drug Use, Mental Health, and Divorce in the Proposed Riverside East SEZ ROI^a

Geographic Area	Alcoholism	Illicit Drug Use	Mental Health ^b	Divorce ^c
California Region 13 (includes Riverside County)	8.5	3.2	8.6	_d
California				4.3

^a Data for alcoholism and drug use represent the percentage of the population over 12 years of age with dependence or abuse of alcohol, illicit drugs. Data are averages for 2004 to 2006.

^b Data for mental health represent the percentage of the population over 18 years of age suffering from serious psychological distress. Data are averages for 2002 to 2004.

^c Divorce rates are the number of divorces per 1,000 population. Data are for 1990.

^d A dash indicates not applicable.

Sources: SAMHSA (2009); CDC (2009).

range of activities, including hunting, fishing, boating, canoeing, wildlife watching, camping,
hiking, horseback riding, mountain climbing, and sightseeing. These areas are discussed in
Section 9.4.5.

6

1 2

Because the number of visitors using state and federal lands for recreational activities is
not available from the various administering agencies, the value of recreational resources in these
areas, based solely on the number of recorded visitors is likely to be an underestimation. In
addition to visitation rates, the economic valuation of certain natural resources can also be
assessed in terms of the potential recreational destination for current and future users, that is,
their nonmarket value (see Section 5.17.1.1.1).

13

14 Another method is to estimate the economic impact of the various recreational activities supported by natural resources on public land in the vicinity of the proposed solar development, 15 16 by identifying sectors in the economy in which expenditures on recreational activities occur. Not 17 all activities in these sectors are directly related to recreation on state and federal lands, with some activity occurring on private land (e.g., dude ranches, golf courses, bowling alleys, and 18 19 movie theaters). Expenditures associated with recreational activities form an important part of 20 the economy of the ROI. In 2007, 75,858 people were employed in Riverside County in the various sectors identified as recreation, constituting 8.9% of total ROI employment 21 22 (Table 9.4.19.1-14). Recreation spending also produced almost \$1,871 million in income in the 23 ROI in 2007. The primary sources of recreation-related employment were eating and drinking 24 places. 25

26

ROI	Employment	Income (\$ million)
Amusement and recreation services	5,289	172.5
Automotive rental	605	27.5
Eating and drinking places	54,938	1,130.4
Hotels and lodging places	8,589	300.7
Museums and historic sites,	299	21.6
Recreational vehicle parks and campsites	602	16.8
Scenic tours	1,742	114.5
Sporting goods retailers	3,794	86.5
Total ROI	75,858	1,870.5

TABLE 9.4.19.1-14ROI Recreation Sector Activity for theProposed Riverside East SEZ, 2007

Source: MIG, Inc. (2009).

9.4.19.2 Impacts

The following analysis begins with a description of the common impacts of solar development, including common impacts on recreation and on social change. These impacts would occur regardless of the solar technology developed in the SEZ. The impacts of facilities employing various solar energy technologies are analyzed in detail in subsequent sections.

9.4.19.2.1 Common Impacts

13 Construction and operation of a solar energy facility at the proposed Riverside East SEZ would produce direct and indirect economic impacts. Direct impacts would occur as a result of 14 15 expenditures on wages and salaries, procurement of goods and services required for project 16 construction and operation, and the collection of state sales and income taxes. Indirect impacts 17 would occur as project wages and salaries, procurement expenditures, and tax revenues 18 subsequently circulate through the economy of each state, thereby creating additional 19 employment, income, and tax revenues. Facility construction and operation would also require 20 in-migration of workers and their families into the ROI surrounding the site, and this would 21 affect population, rental housing, health service employment, and public safety employment. 22 Socioeconomic impacts common to all utility-scale solar energy facilities are discussed in detail in Section 5.17. These impacts will be minimized through the implementation of programmatic 23 24 design features described in Appendix A, Section A.2.2.

25 26

1 2 3

4 5

6

7

8

9 10 11

12

- **Recreation Impacts**
- 27 28

Estimating the impact of solar facilities on recreation is problematic because it is not clear how solar development in the SEZ would affect recreational visitation and nonmarket 1 values (i.e., the value of recreational resources for potential or future visits; see

2 Section 5.17.1.2.3). While it is clear that some land in the ROI would no longer be accessible

3 for recreation, the majority of popular recreational locations would be precluded from solar

4 development. It is also possible that solar facilities in the ROI would be visible from popular

5 recreation locations and that construction workers residing temporarily in the ROI would occupy

accommodations otherwise used for recreational visits, thus reducing visitation and consequently
 affecting the economy of the ROI.

8 9

10

Social Change

11 12 Although an extensive literature in sociology documents the most significant components 13 of social change in energy boomtowns, the nature and magnitude of the social impact of energy 14 facilities in small rural communities are still unclear (see Section 5.17.1.1.4). While some degree of social disruption is likely to accompany large-scale in-migration during the boom phase, there 15 16 is insufficient evidence to predict the extent to which specific communities are likely to be affected, which population groups within each community are likely to be most affected, and 17 18 the extent to which social disruption is likely to persist beyond the end of the boom period 19 (Smith et al. 2001). Accordingly, because of the lack of adequate social baseline data, it has 20 been suggested that social disruption is likely to occur once an arbitrary population growth rate 21 associated with solar energy development projects has been reached, with an annual rate of 22 between 5% and 10% growth in population assumed to result in a breakdown in social 23 structures and a consequent increase in alcoholism, depression, suicide, social conflict, divorce, 24 delinquency, and deterioration in levels of community satisfaction (BLM 1980, 1983, 1996). 25

26 In overall terms, the in-migration of workers and their families into the ROI would 27 represent an increase of 0.1% in county population during construction of the trough technology, 28 with smaller increases for the power tower, dish engine, and PV technologies, and during the 29 operation of each technology. While it is possible that some construction and operations workers 30 will choose to locate in communities closer to the SEZ, the lack of available housing in smaller 31 rural communities in the ROI to accommodate all in-migrating workers and families, and the 32 insufficient range of housing choices to suit all solar occupations, many workers are likely to 33 commute to the SEZ from larger communities elsewhere in the ROI, thereby reducing the 34 potential impact of solar facilities on social change. Regardless of the pace of population growth 35 associated with the commercial development of solar resources and the likely residential location 36 of in-migrating workers and families in communities some distance from the SEZ itself, the 37 number of new residents from outside the ROI is likely to lead to some demographic and social 38 change in small rural communities in the ROI. Communities hosting solar facilities are likely to 39 be required to adapt to a different quality of life, with a transition away from a more traditional 40 lifestyle involving ranching and taking place in small, isolated, close-knit, homogenous communities with a strong orientation toward personal and family relationships, toward a more 41 42 urban lifestyle, with increasing cultural and ethnic diversity, and increasing dependence on 43 formal social relationships within the community.

- 44
- 45
- 46

1 2

9.4.19.2.2 Technology-Specific Impacts

The economic impacts of solar energy development in the proposed SEZ were measured in terms of employment, income, state tax revenues (sales and income), population in-migration, housing, and community service employment (education, health, and public safety). More information on the data and methods used in the analysis are provided in Appendix M.

8 The assessment of the impact of the construction and operation of each technology was 9 based on SEZ acreage, assuming 80% of the area could be developed. To capture a range of 10 possible impacts, solar facility size was estimated on the basis of land requirements of various solar technologies, assuming that 9 acres/MW (0.04 km²/MW) would be required for power 11 12 tower, dish engine, and PV technologies, and 5 acres/MW (0.02 km²/MW) for solar trough 13 technologies. Impacts of multiple facilities employing a given technology at each SEZ were assumed to be the same as impacts for a single facility with the same total capacity. Construction 14 15 impacts were assessed for a representative peak year of construction, assumed to be 2021 for 16 each technology. Construction impacts assumed that a maximum of three projects could be 17 constructed within a given year, with a corresponding maximum land disturbance of up to 18 9,000 acres (36 km²). For operations impacts, a representative first year of operations was 19 assumed to be 2023 for trough and power tower, 2022 for the minimum facility size for dish 20 engine and PV, and 2023 for the maximum facility size for these technologies. The years of 21 construction and operations were selected as representative of the entire 20-year study period. 22 because they are the approximate midpoint; construction and operations could begin earlier. 23

24 25

Solar Trough

26 27

33

Construction. Total construction employment impacts in the ROI (including direct and
 indirect impacts) from the use of solar trough technologies would be up to 15,633 jobs
 (Table 9.4.19.2-1). Construction activities would constitute 1.3% of total ROI employment. A
 solar development would also produce \$927.3 million in income. Direct sales taxes would be
 \$41.2 million; direct income taxes \$18.9 million.

34 Given the scale of construction activities and the likelihood of local worker availability in the required occupational categories, construction of a solar facility means that some 35 36 in-migration of workers and their families from outside the ROI would be required, with 37 2,229 persons in-migrating into the ROI. Although in-migration may potentially affect local 38 housing markets, the relatively small number of in-migrants and the availability of temporary 39 accommodations (hotels, motels, and mobile home parks) would mean that the impact of solar 40 facility construction on the number of vacant rental housing units is not expected to be large, with 1,114 rental units expected to be occupied in the ROI. This occupancy rate would represent 41 42 2.3% of the vacant rental units expected to be available in the ROI.

43

In addition to the potential impact on housing markets, in-migration would also affect
 community service employment (education, health, and public safety. An increase in such
 employment would be required to meet existing levels of service in the ROI. Accordingly,

	Maximum Annual	
	Construction	Operations
Parameter	Impacts	Impacts
	•	•
Employment (no.)		
Direct	5,232	7,079
Total	15,633	11,670
Income ^b		
Total	927.3	423.9
Direct state taxes ^b		
Sales	41.2	0.5
Income	18.9	11.2
BLM payments (\$ million 2008)		
Rental	NA ^d	63.7
Capacity ^e	NA	213.5
In-migrants (no.)	2,229	902
Vacant housing ^c (no.)	1,114	812
Local community service employment		
Teachers (no.)	21	8
Physicians (no.)	4	1
Public safety (no.)	5	2

TABLE 9.4.19.2-1ROI Socioeconomic Impacts AssumingFull Build-out of the Proposed Riverside East SEZ withTrough Facilities^a

- ^a Construction impacts are based on the development at the site in a single year; it was assumed that several facilities with a combined capacity of up to 1,800 MW (corresponding to 9,000 acres [36 km²] of land disturbance) could be built.
 Operations impacts were based on full build-out of the site, producing a total output of 32,469 MW.
- ^b Unless indicated otherwise, values are reported in \$ million 2008.
- ^c Construction activities would affect vacant rental housing; operations activities would affect vacant owner-occupied housing.
- ^d Not applicable.
- ^e The BLM annual capacity payment was based on a fee of \$6,570 per MW, established by the BLM in its Solar Energy Interim Rental Policy (BLM 2010f), assuming a solar facility with no storage capability, and full build-out of the site. Projects with three or more hours of storage would generate higher payments, based on a fee of \$7,884 per MW.

21 new teachers, 4 physicians, and 5 public safety employees (career firefighters and uniformed
police officers) would be required in the ROI. These increases would represent 0.1% of total
ROI employment expected in these occupations.

4 5

Operations. Total operations employment impacts in the ROI (including direct and
indirect impacts) of a build-out using solar trough technologies would be 11,670 jobs
(Table 9.4.19.2-1). Such a solar development would also produce \$423.9 million in income.
Direct sales taxes would be \$0.5 million; direct income taxes \$11.2 million. Based on fees
established by the BLM in its Solar Energy Interim Rental Policy (BLM 2010i), acreage rental
payments would be \$63.7 million, and solar generating capacity payments, at least
\$213.5 million.

14 Given the likelihood of local worker availability in the required occupational categories, operation of a solar facility means that some in-migration of workers and their families from 15 16 outside the ROI would be required, with 902 persons in-migrating into the ROI. Although 17 in-migration may potentially affect local housing markets, the relatively small number of in-migrants and the availability of temporary accommodations (hotels, motels, and mobile home 18 19 parks) mean that the impact of solar facility operation on the number of vacant owner-occupied housing units is not expected to be large, with 812 owner-occupied units expected to be occupied 20 21 in the ROL

22

13

In addition to the potential impact on housing markets, in-migration would affect community service (health, education, and public safety) employment. An increase in such employment would be required to meet existing levels of service in the provision of these services in the ROI. Accordingly, eight new teachers, one physician, and two public safety employees would be required in the ROI.

28 29

Power Tower

30 31 32

Construction. Total construction employment impacts in the ROI (including direct and
 indirect impacts) from the use of power tower technologies would be up to 6,227 jobs
 (Table 9.4.19.2-2). Construction activities would constitute 0.5% of total ROI employment. Such
 a solar development would also produce \$369.3 million in income. Direct sales taxes would be
 less than \$16.4 million; direct income taxes \$7.5 million.

38

Given the scale of construction activities and the likelihood of local worker availability
 in the required occupational categories, construction of a solar facility means that some

41 in-migration of workers and their families from outside the ROI would be required, with

42 888 persons in-migrating into the ROI. Although in-migration may potentially affect local

43 housing markets, the relatively small number of in-migrants and the availability of temporary

44 accommodations (hotels, motels, and mobile home parks) mean that the impact of solar facility

45 construction on the number of vacant rental housing units is not expected to be large, with

	Maximum Annual Construction	Operations
Parameter	Impacts	Impacts
Employment (no.)		
Direct	2 084	3 656
Total	6 227	5,030
1000	0,227	5,155
Income ^b		
Total	369.3	171.1
Direct state taxes ^b Sales Income	16.4 7.5	0.1 5.8
BLM payments (\$ million 2008) Rental	NAd	63.7
Capacitye	NA	118.6
In-migrants (no.)	888	466
Vacant housing ^c (no.)	444	419
Local community service employment		
Teachers (no.)	8	4
Physicians (no.)	1	1
Public safety (no.)	2	1

TABLE 9.4.19.2-2ROI Socioeconomic Impacts AssumingFull Build-out of the Proposed Riverside East SEZ withPower Tower Facilities^a

- ^a Construction impacts are based on the development at the site in a single year; it was assumed that several facilities with a combined capacity of up to 1,000 MW (corresponding to 9,000 acres [36 km²] of land disturbance) could be built. Operations impacts were based on full build-out of the site, producing a total output of 18,038 MW.
- ^b Unless indicated otherwise, values are reported in \$ million 2008.
- ^c Construction activities would affect vacant rental housing; operations activities would affect vacant owner-occupied housing.
- ^d Not applicable.
- ^e The BLM annual capacity payment was based on a fee of \$6,570 per MW, established by the BLM in its Solar Energy Interim Rental Policy (BLM 2010i), assuming a solar facility with no storage capability, and full build-out of the site. Projects with three or more hours of storage would generate higher payments, based on a fee of \$7,884 per MW.

444 rental units expected to be occupied in the ROI. This occupancy rate would represent 0.5%
 of the vacant rental units expected to be available in the ROI.

3

In addition to the potential impact on housing markets, in-migration would affect community service (education, health, and public safety) employment. An increase in such employment would be required to meet existing levels of service in the ROI. Accordingly, eight new teachers, one physician, and two public safety employees would be required in the ROI. These increases would represent less than 0.1% of total ROI employment expected in these occupations.

10

Operations. Total operations employment impacts in the ROI (including direct and
 indirect impacts) of a build-out using power tower technologies would be 5,135 jobs
 (Table 9.4.19.2-2). Such a solar development would also produce \$171.1 million in income.
 Direct sales taxes would be less than \$0.1 million; direct income taxes \$5.8 million. Based on
 fees established by the BLM in its Solar Energy Interim Rental Policy (BLM 2010i), acreage
 rental payments would be \$63.7 million, and solar generating capacity payments, at least
 \$118.6 million.

19

20 Given the likelihood of local worker availability in the required occupational categories, 21 operation of a solar facility means that some in-migration of workers and their families from 22 outside the ROI would be required, with 466 persons in-migrating into the ROI. Although 23 in-migration may potentially affect local housing markets, the relatively small number of 24 in-migrants and the availability of temporary accommodations (hotels, motels and mobile 25 home parks) would mean that the impact of solar facility operation on the number of vacant 26 owner-occupied housing units is not expected to be large, with 419 owner-occupied units 27 expected to be required in the ROI.

28

In addition to the potential impact on housing markets, in-migration would affect community service (education, health, and public safety) employment. An increase in such employment would be required to meet existing levels of service in the ROI. Accordingly, four new teachers, one physician and one public safety employee would be required in the ROI.

- Dish Engine
- 35 36

34

37

Construction. Total construction employment impacts in the ROI (including direct
 and indirect impacts) from the use of dish engine technologies would be up to 2,531 jobs
 (Table 9.4.19.2-3). Construction activities would constitute 0.2% of total ROI employment.
 Such a solar development would also produce \$150.1 million in income. Direct sales taxes
 would be less than \$6.7 million, with direct income taxes of \$3.1 million.

43

Given the scale of construction activities and the likelihood of local worker availability
in the required occupational categories, construction of a solar facility means that some
in-migration of workers and their families from outside the ROI would be required, with

TABLE 9.4.19.2-3 ROI Socioeconomic Impacts Assuming
Full Build-out of the Proposed Riverside East SEZ with
Dish Engine Facilities ^a

Doromotor	Maximum Annual Construction	Operations
Farailleter	Impacts	impacts
Employment (no)		
Direct	847	3,553
Total	2,531	4,990
Income ^b		
Total	150.1	166.2
Direct state taxes ^b		
Sales	6.7	0.1
Income	3.1	5.6
BLM payments (\$ million 2008)		
Rental	NA ^d	63.7
Capacity ^e	NA	118.6
In-migrants (no.)	361	453
Vacant housing ^c (no.)	180	407
Local community service employment		
Teachers (no.)	3	4
Physicians (no.)	1	1
Public safety (no.)	1	1

- ^a Construction impacts are based on the development at the site in a single year; it was assumed that several facilities with a combined capacity of up to 1,000 MW (corresponding to 9,000 acres [36 km²] of land disturbance) could be built.
 Operations impacts were based on full build-out of the site, producing a total output of 18,038 MW.
- ^b Unless indicated otherwise, values are reported in \$ million 2008.
- ^c Construction activities would affect vacant rental housing; operations activities would affect vacant owner-occupied housing.
- ^d Not applicable.
- e The BLM annual capacity payment was based on a fee of \$6,570 per MW, established by the BLM in its Solar Energy Interim Rental Policy (BLM 2010i), assuming a solar facility with no storage capability, and full build-out of the site. Projects with three or more hours of storage would generate higher payments, based on a fee of \$7,884 per MW.

1

361 persons in-migrating into the ROI. Although in-migration may potentially affect local housing markets, the relatively small number of in-migrants and the availability of temporary accommodations (hotels, motels, and mobile home parks) mean that the impact of solar facility construction on the number of vacant rental housing units is not expected to be large, with 180 rental units expected to be occupied in the ROI. This occupancy rate would represent 0.4% of the vacant rental units expected to be available in the ROI.

8 In addition to the potential impact on housing markets, in-migration would affect 9 community service (education, health, and public safety) employment. An increase in such 10 employment would be required to meet existing levels of service in the ROI. Accordingly, 11 three new teachers, one physician, and one public safety employee would be required in the ROI. 12 These increases would represent less than 0.1% of total ROI employment expected in 13 these occupations.

- 14
- 15

23

Operations. Total operations employment impacts in the ROI (including direct and
indirect impacts) of a build-out using dish engine technologies would be 4,990 jobs
(Table 9.4.19.2-3). Such a solar development would also produce \$166.2 million in income.
Direct sales taxes would be \$0.1 million; direct income taxes \$5.6 million. Based on fees
established by the BLM in its Solar Energy Interim Rental Policy (BLM 2010i), acreage rental
payments would be \$63.7 million, and solar generating capacity payments, at least
\$118.6 million.

24 Given the likelihood of local worker availability in the required occupational categories, 25 operation of a dish engine solar facility means that some in-migration of workers and their families from outside the ROI would be required, with 453 persons in-migrating into the ROI. 26 27 Although in-migration may potentially affect local housing markets, the relatively small number 28 of in-migrants and the availability of temporary accommodations (hotels, motels, and mobile 29 home parks) mean that the impact of solar facility operation on the number of vacant owner-30 occupied housing units is not expected to be large, with 407 owner-occupied units expected to be 31 required in the ROI.

32

In addition to the potential impact on housing markets, in-migration would affect community service employment (education, health, and public safety). An increase in such employment would be required to meet existing levels of service in the ROI. Accordingly, four new teachers, one physician, and one public safety employee would be would be required in the ROI.

38 39

Photovoltaic

40 41 42

Construction. Total construction employment impacts in the ROI (including direct and
 indirect impacts) from the use of PV technologies would be up to 1,181 jobs (Table 9.4.19.2-4).
 Construction activities would constitute 0.1 % of total ROI employment. Such a solar

Parameter	Maximum Annual Construction Impacts	Operations Impacts
Employment (no.)		
Direct	305	354
	1 1 9 1	334
lotal	1,181	498
Income ^b		
Total	70.0	16.6
10001	70.0	10.0
Direct state taxes ^b		
Sales	3.1	< 0.1
Income	1.4	0.6
BLM payments (\$ million 2008)		
Rental	NAd	63.7
Capacity ^e	NA	94.9
Cupuelly		
In-migrants (no.)	168	45
in ingrants (iio.)	100	10
Vacant housing (n_0)	84	41
vacant nousing (no.)	01	11
Local community service employment		
Teachers (no.)	2	0
Physicians (no.)	0	0
Public safety (no.)	0	0
······································		

TABLE 9.4.19.2-4ROI Socioeconomic Impacts AssumingFull Build-out of the Proposed Riverside East SEZ withPV Facilities^a

- ^a Construction impacts are based on the development at the site in a single year; it was assumed that several facilities with a combined capacity of up to 1,000 MW (corresponding to 9,000 acres [36 km²] of land disturbance) could be built. Operations impacts were based on full build-out of the site, producing a total output of 18,038 MW.
- ^b Unless indicated otherwise, values are reported in \$ million 2008.
- c Construction activities would affect vacant rental housing; operations activities would affect owner-occupied housing.
- ^d Not applicable.
- e The BLM annual capacity payment was based on a fee of \$5,256 per MW, established by the BLM in its Solar Energy Interim Rental Policy (BLM 2010i), assuming full build-out of the site.

development would also produce \$70.0 million in income. Direct sales taxes would be less than
 \$3.1 million; direct income taxes, of \$1.4 million.

3

4 Given the scale of construction activities and the likelihood of local worker availability 5 in the required occupational categories, construction of a solar facility means that some 6 in-migration of workers and their families from outside the ROI would be required, with 7 168 persons in-migrating into the ROI. Although in-migration may potentially affect local 8 housing markets, the relatively small number of in-migrants and the availability of temporary 9 accommodations (hotels, motels, and mobile home parks) mean that the impact of solar facility construction on the number of vacant rental housing units is not expected to be large, with 10 84 rental units expected to be occupied in the ROI. This occupancy rate would represent 0.2%11 12 of the vacant rental units expected to be available in the ROI. 13 14 In addition to the potential impact on housing markets, in-migration would affect

14 In addition to the potential impact on housing markets, m-inigration would affect
 15 community service (education, health, and public safety) employment. An increase in such
 16 employment would be required to meet existing levels of service in the ROI. Accordingly,
 17 two new teachers would be required in the ROI. This increase would represent less than 0.1%
 18 of total ROI employment expected in this occupation.

19 20

Operations. Total operations employment impacts in the ROI (including direct and
 indirect impacts) of a build-out using PV technologies would be 498 jobs (Table 9.4.19.2-4).
 Such a solar development would also produce \$16.6 million in income. Direct sales taxes would
 be less than \$0.1 million; direct income taxes less than \$0.6 million. Based on fees established by
 the BLM in its Solar Energy Interim Rental Policy (BLM 2010i), acreage rental payments would
 be \$63.7 million, and solar generating capacity payments, at least \$94.9 million.

28 Given the likelihood of local worker availability in the required occupational categories, 29 operation of a solar facility means that some in-migration of workers and their families from 30 outside the ROI would be required, with 45 persons in-migrating into the ROI. Although 31 in-migration may potentially affect local housing markets, the relatively small number of 32 in-migrants and the availability of temporary accommodations (hotels, motels, and mobile home 33 parks) mean that the impact of solar facility operation on the number of vacant owner-occupied 34 housing units is not expected to be large, with 41 owner-occupied units expected to be required in the ROI. 35

36 37

No new community service employment would be required to meet existing levels of service in the ROI.

- 38 39
- 40
- 41 42

9.4.19.3 SEZ-Specific Design Features and Design Feature Effectiveness

No SEZ-specific design features addressing socioeconomic impacts have been identified
 for the proposed Riverside East SEZ. Implementing the programmatic design features described
 in Appendix A, Section A.2.2, as required under BLM's proposed Solar Energy Program, would
 reduce the potential for socioeconomic impacts during all project phases.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	<i>This page intentionally left blank.</i>
14	
15	

9.4.20 Environmental Justice

9.4.20.1 Affected Environment

6 On February 11, 1994, the President signed E. O. 12898,"Federal Actions to Address 7 Environmental Justice in Minority Populations and Low-Income Populations," which formally 8 requires federal agencies to incorporate environmental justice as part of their missions (*Federal* 9 *Register*, Volume 59, page 7629, Feb. 11, 1994). Specifically, it directs them to address, as 10 appropriate, any disproportionately high and adverse human health or environmental effects of 11 their actions, programs, or policies on minority and low-income populations.

13 The analysis of the impacts of solar energy projects on environmental justice issues follows guidelines described in the CEQ's Environmental Justice Guidance under the National 14 Environmental Policy Act (CEQ 1997). The analysis method has three parts: (1) a description 15 16 of the geographic distribution of low-income and minority populations in the affected area is undertaken: (2) an assessment is conducted to determine whether construction and operation 17 18 would produce impacts that are high and adverse; and (3) if impacts are high and adverse, a 19 determination is made as to whether they disproportionately affect minority and low-income 20 populations.

21

1

2 3 4

5

12

22 Construction and operation of solar energy projects in the proposed Riverside East SEZ 23 could affect environmental justice if any adverse health and environmental impacts resulting 24 from either phase of development are significantly high and if these impacts would 25 disproportionately affect minority and low-income populations. If the analysis determines that 26 health and environmental impacts are not significant, there can be no disproportionate impacts 27 on minority and low-income populations. In the event impacts are significant, disproportionality 28 would be determined by comparing the proximity of any high and adverse impacts with the 29 location of low-income and minority populations.

30

The analysis of environmental justice issues associated with the development of solar facilities considered impacts within the proposed Riverside East SEZ and an associated 50-mi (80-km) radius around the boundary of the SEZ. A description of the geographic distribution of minority and low-income groups in the affected area was based on demographic data from the 2000 Census (U.S. Bureau of the Census 2009k,l). The following definitions were used to define minority and low-income population groups:

37 38

39

40

41

42

Minority. Persons are included in the minority category if they identify themselves as belonging to any of the following racial groups: (1) Hispanic, (2) Black (not of Hispanic origin) or African American, (3) American Indian or Alaska Native, (4) Asian, or (5) Native Hawaiian or Other Pacific Islander.

Beginning with the 2000 Census, where appropriate, the census form allows
individuals to designate multiple population group categories to reflect their
ethnic or racial origin. In addition, persons who classify themselves as being
of multiple racial origin may choose up to six racial groups as the basis of

1 2 3 4 5	their racial origins. The term minority includes all persons, including those classifying themselves in multiple racial categories, except those who classify themselves as not of Hispanic origin and as White or "Other Race" (U.S. Bureau of the Census 2009k).	
5 6 7 8 9 10	The CEQ guidance proposed that minority populations should be identified where either (1) the minority population of the affected area exceeds 50%, or (2) the minority population percentage of the affected area is meaningfully greater than the minority population percentage in the general population or other appropriate unit of geographic analysis.	
11 12 13 14 15	The PEIS applies both criteria in using the Census Bureau data for census block groups, wherein consideration is given to the minority population that is both greater than 50% and 20 percentage points higher than in the state (the reference geographic unit).	
10 17 18 19 20 21 22	• Low-Income. Individuals fall below the poverty line. The poverty line takes into account family size and age of individuals in the family. In 1999, for example, the poverty line for a family of five with three children younger than 18 was \$19,882. For any given family below the poverty line, all family members are considered as being below the poverty line for the purposes of analysis (U.S. Bureau of the Census 2009l).	
23 24 25 26 27 28 20	The data in Table 9.4.20.1-1 show the minority and low-income composition of the total population located in the proposed SEZ based on 2000 Census data and CEQ guidelines. Individuals identifying themselves as Hispanic or Latino are included in the table as a separate entry. However, because Hispanics can be of any race, this number also includes individuals also identifying themselves as being part of one or more of the population groups listed in the table.	
29 30 31 32 33 34 35 36 37 38	A large number of minority and low-income individuals are located in the 50-mi (80-km) area around the boundary of the SEZ. Within the 50-mi (80-km) radius in Arizona, 24.5% of the population is classified as minority, while 13.0% is classified as low-income. The number of minority individuals does not exceed 50% of the total population in the area, and the number of minority individuals exceeds the state average by 20 percentage points or more, meaning that there is no minority population in the SEZ area based on 2000 Census data and CEQ guidelines. The number of low-income individuals does not exceed the state average by 20 percentage points or more and does not exceed 50% of the total population in the area, meaning that there are no low-income populations in the SEZ.	
 39 40 41 42 43 44 45 46 	Within the 50-mi (80-km) radius in California, 60.3% of the population is classified as minority, while 20.5% is classified as low-income. While the number of minority individuals does not exceed the state average by 20 percentage points or more, the number of minority individuals exceeds 50% of the total population in the area meaning that there is a minority population in the SEZ as a whole area based on 2000 Census data and CEQ guidelines. The number of low-income individuals does not exceed the state average by 20 percentage points or	
Parameter	Arizona	California
---	---------	------------
Total population	66 364	255 043
i our population	00,501	200,010
White, non-Hispanic	53,608	101,207
Hispanic or Latino	8,717	131,953
Non-Hispanic or Latino minorities	4,039	21,883
One race	3,196	18,253
Black or African American	354	11,721
American Indian or Alaskan Native	2,426	2,184
Asian	341	3,513
Native Hawaiian or Other Pacific Islander	46	453
Some other race	29	382
Two or more races	843	3,630
Total minority	12,756	153,836
Low-income	8,496	46,222
Percentage minority	19.2	60.3
State percent minority	24.5	40.5
Percentage low-income	13.0	20.5
State percent low-income	13.9	14.2

TABLE 9.4.20.1-1Minority and Low-Income Populationswithin the 50-mi (80-km) Radius Surrounding the ProposedRiverside East SEZ

Source: U.S Bureau of the Census (2009k,l).

1 2 2

more and does not exceed 50% of the total population in the area, meaning that there are no lowincome populations in the SEZ as a whole.

5
6 Figures 9.4.20.1-1 and 9.4.20.1-2 show the locations of the minority and low-income
7 population groups within the 50-mi (80-km) radius around the boundary of the SEZ.

9 In the California portion of the 50-mi (80-km) radius around the SEZ, more than 50% 10 of the population is classified as minority in block groups located in the city of Blythe itself and to the immediate west and southwest of the city; in the western part of the county in the vicinity 11 12 of Desert Hot Springs; in Imperial County in the vicinity of Calipatria and Westmoreland; and in the Fort Yuma Indian Reservation in the Colorado River valley. Block groups with a minority 13 population which is more than 20 percentage points higher than the state average are located in 14 the city of Blythe, to the immediate west of the city, and in the western portions of the 50-mi 15 16 (80-km) radius in the vicinity of Indio and Coachella. In the Arizona portion of the 50-mi 17 (80-km) radius, more than 50% of the population is classified as minority in block groups located

FIGURE 9.4.20.1-1 Minority Population Groups within the 50-mi (80-km) Radius Surrounding the Proposed Riverside East SEZ

1

2

3 Surrounding the Proposed Riverside East SEZ

in the Colorado River Indian Reservation, in the city of Parker, and to the east of the Colorado
 River, south of Blythe.
 3

Census block groups in the 50-mi (80-km) radius in California that have more than 50% of their population classified as low-income are located in the vicinity of the city of Twentynine Palms, in the western portion of Riverside County, and in Arizona, to the northeast of Yuma. Census block group in California where the low-income population is more than 20 percentage points higher than the state average, are located in the city of Blyth, in the western portion of the county, in the Colorado River Indian Reservation, and in the vicinity of the city of Victorville.

10 11 12

13

9.4.20.2 Impacts

14 Environmental justice concerns common to all utility-scale solar energy facilities are 15 described in detail in Section 5.18. These impacts will be minimized through the implementation 16 of programmatic design features described in Appendix A, Section A.2.2, which address the 17 underlying environmental impacts contributing to the concerns. The potentially relevant environmental impacts associated with solar facilities within the proposed Riverside East SEZ 18 19 include noise and dust during the construction of solar facilities; noise and EMF effects 20 associated with solar project operations; the visual impacts of solar generation and auxiliary 21 facilities, including transmission lines; access to land used for economic, cultural, or religious 22 purposes; and effects on property values as areas of concern that might potentially affect 23 minority and low-income populations.

24

Potential impacts on low-income and minority populations could be incurred as a result
of the construction and operation of solar facilities involving each of the four technologies.
Although impacts are likely to be small, there are minority populations defined by CEQ
guidelines (Section 9.4.20.1) within the 50-mi (80-km) radius around the boundary of the SEZ,
meaning that any adverse impacts of solar projects could disproportionately affect minority
populations. Because there are also low-income populations within the 50-mi (80-km) radius,
according to CEQ guidelines, there could also be impacts on low-income populations.

- 32
- 33 34

35

9.4.20.3 SEZ-Specific Design Features and Design Feature Effectiveness

No SEZ-specific design features addressing environmental justice impacts have been
 identified for the proposed Riverside East SEZ. Implementing the programmatic design features
 described in Appendix A, Section A.2.2, as required under BLM's proposed Solar Energy
 Program, would reduce the potential for environmental justice impacts during all project phases.

- 41
- 42

6 7 8

9

17

9.4.21 Transportation

The proposed Riverside East SEZ is accessible by road. An interstate highway passes through it, and eight small airports are located within 72 mi (116 km) of the SEZ. General transportation considerations and impacts are discussed in Sections 3.4 and 5.19, respectively.

9.4.21.1 Affected Environment

I-10 passes along the southern edge and then through the proposed Riverside East SEZ as shown in Figure 9.4.21-1. The town of Blythe is situated on the eastern border of the SEZ. To the west of the SEZ, I-10 passes through Indio, about 47 mi (76 km) from the western edge of the SEZ, on its way to the Los Angeles area, about 120 mi (193 km) from the SEZ. There are a number of exits from I-10 as it passes by and through the SEZ; they are listed in Table 9.4.21-1. Figure 9.4.21-1 also shows the designated open OHV routes in the proposed Riverside East SEZ. These routes were designated under the CDCA Plan (BLM 1999).

18 Other paved roads that cross parts of the Riverside East SEZ include State Route 177 and 19 Midland Road. State Route 177 runs north-south through the western section of the SEZ 20 between I-10 and State Route 62. In the eastern section of the SEZ, Midland Road crosses the northeastern portion from Blythe to the ghost town of Midland, which is situated at the northern 21 22 edge of the eastern section of the SEZ. A number of dirt roads also cross the SEZ at various 23 points. Another major route in the area is U.S. 95, which runs north-south through Blythe and 24 passes within 2 to 4 mi (3 to 6 km) of the eastern edge of the SEZ. Table 9.4.21-2 gives the 25 annual average traffic volumes along I-10 and state roads near the SEZ for 2008. 26

27 The nearest operating railroad is the ARZC Railroad, which passes through Rice, about 28 18 mi (29 km) north of the large eastern section of the proposed Riverside East SEZ. However, 29 the shortest drive from the SEZ to Rice is on Midland Road, a dirt road north of Midland. The 30 Vidal rail stop on the ARZC Railroad is about a 41-mi (66-km) drive via U.S. 95 from the 31 eastern edge of the SEZ. The ARZC Railroad is a regional short line railroad that originates in 32 Cadiz, approximately 50 mi (80 km) northwest of Rice, where it has an interchange with the 33 BNSF Railroad (RailAmerica 2010). The ARZC Railroad continues on from Rice through Vidal 34 to the east for about 150 mi (240 km), passing through Parker, California, and eventually joining 35 with the BNSF Railroad again in Matthie, Arizona, northwest of Phoenix. The next closest 36 railroad to the SEZ is the UP Railroad, which provides service in Indio (UPR 2009).

37

38 The ARZC Railroad also has a spur that runs south from Rice through the eastern section 39 of the SEZ and goes to Blythe. However, this spur has become inactive and may be abandoned 40 (Blythe City Council 2008). Another inactive railroad, the Eagle Mountain (EM) Railroad, runs 41 north-south immediately to the west of the large western section of the SEZ and has an interchange with the UP Railroad at Ferrum, approximately 31 mi (50 km) southwest of the 42 43 southwestern corner of the proposed Riverside East SEZ. The EM Railroad is a private railroad 44 owned by Kaiser Ventures, LLC, that was originally used for hauling iron ore and is currently in 45 need of repair. Kaiser Ventures is seeking to convert its former iron ore mine into a regional 46 municipal solid waste landfill operation (Kaiser Ventures 2010) that would use the railroad for 47 hauling waste to the landfill.

FIGURE 9.4.21.1-1 Local Transportation Network Serving the Proposed Riverside East SEZ

Road Name	Exit Number/ Mile Marker
Desert Center Rice Road (State Route 177)	192
Corn Springs Road	201
Paled Dunes Drive and Chuckwalla Valley Road	217
Wiley's Well Road	222
Mesa Drive (at Blythe Airport)	232
Neighbours Boulevard (State Route 78) (western side of Blythe)	238

TABLE 9.4.21.1-1I-10 Freeway Exits in the Vicinity of the ProposedRiverside East SEZ

1 2

TABLE 9.4.21.1-2AADT on Major Roads near the Proposed Riverside EastSEZ, 2008

Road	General Direction	Location	AADT (Vehicles)
I-10	East–West	West of junction State Route 62 North East of junction State Route 62 North West of junction State Route 86 South East of junction State Route 86 South West of Chiriaco Summit Interchange West of junction State Route 177 North East of junction State Route 177 North Corn Springs Road Interchange West of Wiley's Well Road East of Wiley's Well Road East of Mesa Drive East of junction State Route 78 South West of junction U.S. 95 North	81,000 79,000 52,000 25,000 22,500 23,000 21,400 21,400 21,400 21,300 23,500 22,500 23,800 25,000
	F 1 1 1	East of junction U.S. 95 North	25,500
State Route 62	East–West	Cadiz Road Blythe Rice Road Junction U.S. 95	2,200 2,000 2,000 2,700
State Route 78	North–South	Junction I-10 South of 28th Avenue Fourth Street (Palo Verde)	2,900 1,800 2,650
State Route 177	North-South	Junction I-10 Junction State Route 62	3,700 1,300
U.S. 95	North–South	Junction State Route 62 South of Riverside/San Bernardino Co. Line North of Sixth Avenue (Blythe) North of Hobson Way (Blythe)	3,000 1,900 2,400 3,500

Source: Caltrans (2009).

Eight small airports, listed in Table 9.4.21.1-3, are open to the public and within a driving distance of approximately 72 mi (116 km) of the proposed Riverside East SEZ. None of these airports has regularly scheduled passenger service. The nearest public airports are the Blythe and Desert Center Airports, which are immediately adjacent to (Blythe) or within the bounds of (Desert Center) the general SEZ area.

9.4.21.2 Impacts

10 As discussed in Section 5.19, primary transportation impacts of the SEZ are anticipated to come from commuting worker traffic. I-10, a regional traffic corridor, would experience small 11 12 impacts for single projects that may have up to 1,000 daily workers, with an additional 13 2,000 vehicle trips per day (maximum). Such an increase is less than 10% of the current traffic on I-10, as summarized in Table 9.4.21.1-2, which provides the available AADT values for 14 routes in the vicinity of the SEZ. However, the exits on I-10 might experience moderate impacts 15 16 with some congestion. Local road improvements would be necessary in any portion of the SEZ 17 near I-10 that might be developed so as not to overwhelm the local roads near any site access 18 point(s). Similarly, any access to portions of the SEZ using State Route 177 or U.S. 95 may 19 require road improvements on State Route 177 or U.S. 95 and local access roads. 20

Solar development within the SEZ would affect public access along OHV routes designated open and available for public use. There are several routes designated as open within the proposed SEZ. Open routes crossing areas granted ROWs for solar facilities would be redesignated as closed (see Section 5.5.1 for more details on how routes coinciding with proposed solar facilities would be treated).

26

7 8

9

27 If up to three large projects with approximately 1,000 daily workers each were under 28 development simultaneously, an additional 6,000 vehicle trips per day could be added to I-10 in 29 the vicinity of the SEZ, assuming ride-sharing was not implemented and all access to the SEZs 30 was funneled through I-10 (i.e., no workers commuted to work via State Route 177 from State Route 62 to the north or via local roads from U.S. 95 to the east). This would be an increase of 31 32 about 25% of the current average daily traffic on most segments of I-10 near the SEZ, and could 33 have moderate impacts on traffic flow during peak commute times. The extent of the problem 34 would depend on the relative locations of the projects within the SEZ, where the worker 35 populations originate, and work schedules. Affected exits on I-10 would experience moderate 36 impacts with some congestion. Local road improvements would be necessary in any portion of 37 the SEZ near I-10 that might be developed so as not to overwhelm the local roads near any site 38 access point(s). Similarly, any access to portions of the SEZ that use State Route 177 or U.S. 95 39 may also require road improvements on State Route 177 or U.S. 95 and local access roads, 40 depending on the percentage of worker commuter traffic using those routes.

				Runway 1	a		Runway 2	a
Airport	Location	Owner/Operator	Length (ft [m])	Туре	Condition	Length (ft [m])	Туре	Condition
Avi Suquilla	Just across the border in Parker, Arizona, approximately 62 mi (100 km) by way of U.S. 95 east of the SEZ	Colorado River Indian Tribes	6,250 (1,905)	Asphalt	Good	_b	_	_
Bermuda Dunes	54 mi (87 km) west of the SEZ off I-10	Bermuda Dunes Airport Corporation	5,002 (1,525)	Asphalt	Good	_	_	_
Blythe	Off I-10, at the eastern edge of the SEZ	County of Riverside/ City of Blythe	5,800 (1,768)	Asphalt	Good	6,543 (1,994)	Asphalt	Good
Chiriaco Summit	Off I-10, exit 173, 19 mi (31 km) west of the SEZ	County of Riverside	4,600 (1,402)	Asphalt	Fair	_	_	_
Desert Center	Off State Route 177 just north of I-10, surrounded by the SEZ	Chuckwalla Valley Associates	4,200 (1,280)	Asphalt	Fair	_	_	_
Jacqueline Cochran Regional	West of State Route 86 south of I-10 interchange, about 53 mi (85 km) from the SEZ to the west	County of Riverside	4,995 (1,522)	Asphalt	Good	8,500 (2,591)	Asphalt	Good
Palm Springs International	About 72 mi (116 km) to the west of the SEZ near I-10	City of Palm Springs	4,952 (1,509)	Asphalt	Good	10,001 (3,048)	Asphalt/ Porous Friction	Good

TABLE 9.4.21.1-3 Airports Open to the Public in the Vicinity of the Proposed Riverside East SEZ

TABLE 9.4.21.1-3 (Cont.)

				Runway 1	a		Runway 2	a
Airport	Location	Owner/Operator	Length (ft [m])	Туре	Condition	Length (ft [m])	Туре	Condition
Twentynine Palms	Approximately 55 mi (88 km) to the northwest of the SEZ along State Route 62	County of San Bernardino	3,797 (1,157)	Asphalt	Good	5,531 (1,686)	Asphalt	Good

^a Source: FAA (2009).

^b A dash indicates not applicable.

1 Because of the proximity of the Blythe and Desert Center Airports, there is a potential for 2 impacts on or interference with flight paths and related flight operations, depending on the 3 location of a solar project within the SEZ. Without proper planning, there could be problems 4 with reflector glare interfering with pilot vision during takeoffs and landings. Problems with 5 glare would be dependent on the specific locations of reflectors within the SEZ. Compliance 6 with FAA regulations and implementation of required programmatic design features would 7 address these concerns. For example, the location of power towers and other taller structures 8 would take into account runway takeoff and landing patterns.

- 9 10
- 11

9.4.21.3 SEZ-Specific Design Features and Design Feature Effectiveness

The programmatic design features discussed in Appendix A, Section A.2.2, including
local road improvements, multiple site access locations, staggered work schedules, and ridesharing, would all provide some relief to traffic congestion on local roads leading to the SEZ.
Depending on the locations of proposed solar facilities within the SEZ, more specific access
locations and local road improvements could be implemented.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	This page intentionally left blank.
14	
15	

9.4.22 Cumulative Impacts

3 The analysis presented in this section addresses the potential cumulative impacts in the 4 vicinity of the proposed Riverside East SEZ in Riverside County, California. The CEQ 5 guidelines for implementing NEPA define cumulative impacts as environmental impacts 6 resulting from the incremental impacts of an action when added to other past, present, and 7 reasonably foreseeable future actions (40 CFR 1508.7). The impacts of other actions are 8 considered without regard to the agency (federal or nonfederal), organization, or person that 9 undertakes them. The time frame of this cumulative impacts assessment could appropriately 10 include activities that would occur up to 20 years in the future (the general time frame for PEIS analyses), but little or no information is available for projects that could occur further than 5 to 11 12 10 years in the future.

14 The nearest population center is the small community of Blythe located 6 mi (9 km) east of the SEZ. The small town of Desert Center is adjacent to the southwestern boundary of the 15 16 SEZ. The proposed Riverside East SEZ is closely surrounded by Joshua Tree NP to the west and 17 seven WAs: the Palen-McCoy WA, Rice Valley WA, and Big Maria Mountains WA are all 18 located north of the SEZ; the Chuckwalla Mountains WA, Little Chuckwalla Mountains WA, 19 and Palo Verde Mountain WA are all located south of the SEZ; and Joshua Tree WA is located 20 to the west. In addition, the Riverside East SEZ is located close to the Iron Mountain SEZ, and in 21 some areas, impacts from the two SEZs overlap.

22

13

1

2

The geographic extent of the cumulative impacts analysis for potentially affected resources near the Riverside East SEZ is identified in Section 9.4.22.1. An overview of ongoing and reasonably foreseeable future actions is presented in Section 9.4.22.2. General trends in population growth, energy demand, water availability, and climate change are discussed in Section 9.4.22.3. Cumulative impacts for each resource area are discussed in Section 9.4.22.4.

- 29
- 30 31

9.4.22.1 Geographic Extent of the Cumulative Impacts Analysis

32 The geographic extent of the cumulative impacts analysis for potentially affected 33 resources evaluated near the Riverside East SEZ is provided in Table 9.4.22.1-1. These 34 geographic areas define the boundaries encompassing potentially affected resources. Their extent 35 varies on the basis of the nature of the resource being evaluated and the distance at which an 36 impact may occur (thus, for example, the evaluation of air quality may have a greater regional 37 extent of impact than visual resources). Most of the lands around the SEZ are administered by 38 the BLM, the NPS, or the DoD; there are also some Tribal Lands about 10 mi (16 km) to the east 39 and northeast of the SEZ. The BLM administers approximately 58% of the lands within a 50-mi 40 (80-km) radius of the SEZ. 41

- 41 42
- 43

TABLE 9.4.22.1-1Geographic Extent of the Cumulative Impacts Analysis by Resource Area:Proposed Riverside East SEZ

Resource Area	Geographic Extent
Land use	Eastern Riverside County
Specially Designated Areas and Lands with Wilderness Characteristics	Within a 25-mi (40-km) radius of the Riverside East SEZ
Rangeland Resources	Eastern San Bernardino and Riverside Counties
Recreation	All of San Bernardino and Riverside Counties
Military and Civilian Aviation	For Military Aviation, southeastern California and western Arizona For Civilian Aviation, eastern San Bernardino and Riverside Counties
Soil Resources	Areas within and adjacent to the Riverside East SEZ
Minerals	Eastern San Bernardino and Riverside Counties
Water Resources Surface Water Groundwater	CRA, Colorado River, Palen Lake, Ford Dry Lake Chuckwalla Valley and Palo Verde Mesa Basins
Air Quality and Climate	A 31-mi (50-km) radius from the center of the Riverside East SEZ within the Mojave Desert Air Basin
Vegetation, Wildlife and Aquatic Biota, Special Status Species	A 50-mi (80-km) radius from the center of the Riverside East SEZ, including portions of Riverside, San Bernardino, and Imperial Counties in California and La Paz and Yuma Counties in Arizona
Visual Resources	Viewshed within a 25-mi (40-km) radius of the Riverside East SEZ
Acoustic Environment (noise)	Areas adjacent to the Riverside East SEZ
Paleontological Resources	Areas within and adjacent to the Riverside East SEZ
Cultural Resources	Areas within and adjacent to the Riverside East SEZ for archaeological sites; viewshed within a 25-mi (40-km) radius of the Riverside East SEZ for other properties, such as traditional cultural properties
Native American Concerns	Valley areas and mountains within and adjacent to the Riverside East SEZ; viewshed within a 25-mi (40-km) radius of the Riverside East SEZ
Socioeconomics	A 50-mi (80-km) radius from the center of the Riverside East SEZ
Environmental Justice	A 50-mi (80-km) radius from the center of the Riverside East SEZ
Transportation	U.S. Highway 10; State Route 177; railroads running north-south, one on western and one on eastern portion of Riverside East SEZ.

1	9.4	4.22.2 Overview of Ongoing and Reasonably Foreseeable Future Actions
23	Tł	the future actions described below are those that are "reasonably foreseeable". that is
4	they have	already occurred, are ongoing, are funded for future implementation, or are included in
5	firm near-	term plans. Types of proposals with firm near-term plans are as follows:
6		
/	•	Proposals for which NEPA documents are in preparation or finalized;
8		Dronogola in a datailad dagion abagay
9 10	•	Proposais in a detailed design phase;
10	•	Proposals listed in formal NOIs published in the <i>Eadaral Pagistar</i> or state
11	·	nublications:
12		publications,
14	•	Proposals for which enabling legislations has been passed: and
15		roposais for which chaoting registrations has been passed, and
16	•	Proposals that have been submitted to federal, state, or county regulators to
17		begin a permitting process.
18		
19	Projects in	n the bidding or research phase or that have been put on hold were not included in the
20	cumulativ	e impact analysis.
21		
22	Tł	ne ongoing and reasonably foreseeable future actions described below are grouped into
23	two categ	ories: (1) actions that relate to energy production and distribution, including potential
24	solar ener	gy projects under the proposed action (Section 9.4.22.2.1), and (2) other ongoing and
25	reasonabl	y foreseeable actions, including those related to mining and mineral processing,
26	grazing m	anagement, transportation, recreation, water management, and conservation
27	(Section 9	0.4.22.2.2). Together, these actions have the potential to affect human and
28	environm	ental receptors within the geographic range of potential impacts over the next 20 years.
29		
30 21	0	1 22 2 1 Enormy Production and Distribution
32	9.4	4.22.2.1 Energy Froduction and Distribution
32	Re	easonably foreseeable future actions related to energy production and distribution and
34	other mai	or actions within a 50-mi (80-km) radius from the center of the Riverside East SEZ
35	which inc	ludes portions of Riverside San Bernardino and Imperial Counties in California and
36	La Paz an	d Yuma Counties in Arizona, are identified in Table 9.4.22.2-1 and described in the
37	following	sections. Future renewable energy facilities are expected to be the main contributors
38	to potentia	al future impacts in this area, because of favorable conditions in the area for their
39	developm	ent, large acreages required, and potentially large quantities of water used. The area is
40	otherwise	largely undeveloped and would be expected to remain so in the absence of renewable

- 41 energy development. Thus, this analysis focuses on renewable energy facilities and any other
- 42 foreseeable energy large projects, nominally covering 500 acres or more or requiring amounts
- 43 of water on the scale of utility-scale CSP.

TABLE 9.4.22.2-1Reasonably Foreseeable Future Actions Related to Energy Development andDistribution and Other Major Actions near the Proposed Riverside East SEZ^a

Description	Status	Resources Affected	Primary Impact Location
Renewable Energy Projects on			
Rice Solar Energy, 150 MW power tower facility, 2,560 total acres (on private land)	In review; AFC filed with CEC Oct. 21, 2009; CEC comments on AFC sent Nov. 23, 2009.	Land use, visual, terrestrial habitats, wildlife, groundwater	About 15 mi (24 km) north of the eastern part of Riverside East SEZ, adjacent to and south of State Route 62
Tessera Solar, up to 500 MW dish engine facility (on county land)	County of Riverside awarded contract June 2009	Land use, visual, terrestrial habitats, wildlife, groundwater	Riverside County
Fast-Track Solar Energy Projects on BLM-Administered Land			
First Solar Desert Sunlight (CACA 48649), 550-MW PV facility; 4,410 disturbed acres	NOI to prepare an EIS issued on Jan. 13, 2010	Land use, visual, terrestrial habitats, wildlife, groundwater	Western part of Riverside East SEZ
Solar Millennium Palen Solar Project (CAC 48810), 484-MW solar trough; 5,200 total acres	NOI to prepare an EIS issued on Nov. 23, 2009	Land use, visual, terrestrial habitats, wildlife, groundwater	West-central part of Riverside East SEZ
Solar Millennium Blythe Solar Project (CACA 48811), 986-MW trough facility; 9,480 total acres ^b	NOI to prepare an EIS issued on Nov. 23, 2009	Land use, visual, terrestrial habitats, wildlife, groundwater	Eastern part of Riverside East SEZ
NextEra Genesis Ford Dry Lake Solar Project (CACA 48880), 250-MW trough facility; 4,640 total acres ^b	NOI to prepare an EIS issued on Nov. 23, 2009	Land use, visual, terrestrial habitats, wildlife, groundwater	Central part of Riverside East SEZ
<i>Renewable Energy Projects</i> Orresource Geothermal (CACA 6217, CACA 6218, CACA 17568)	Ongoing	Land use, terrestrial habitats, visual	About 50 mi (80 km) south of Riverside East SEZ, within the East Mesa Known Geothermal Resource Area
Geothermal Power Project (CACA 18092X)	Authorized	Land use, terrestrial habitats, visual	About 50 mi (80 km) south of Riverside East SEZ, within the East Mesa Known Geothermal Resource Area

TABLE 9.4.22.2-1 (Cont.)

Description	Status	Resources Affected	Primary Impact Location
Renewable Energy Projects (Cont.) Geothermal Power Project (CACA 29853X)	Authorized	Land use, terrestrial habitats, visual	About 45 mi (72 km) southwest of Riverside East SEZ
<i>Transmission and Distribution</i> Blythe Energy Project Transmission Line Modifications Devers to Palo Verde No. 2	Under way California portion authorized	Land use, terrestrial habitats, visual Land use, terrestrial habitats, visual	Riverside County Riverside County
<i>Other Projects</i> Cadiz Valley Dry Year Supply Project	Under review	Disturbed areas, terrestrial habitats along railroad ROW	Areas adjacent to ARZC Railroad ROW in southern portion of Iron Mountain SEZ, about 40 mi (64.3 km) north of Riverside East SEZ
Proposed West Chocolate Mountains Renewable Energy Evaluation Area	NOI to prepare an EIS issued on Feb. 10, 2010	Land use, visual, terrestrial habitats, wildlife, groundwater	About 20 mi (32 km) southwest of Riverside East SEZ
Eagle Crest Hydroelectric Plant	Draft license application submitted to FERC June 2009	Land use, surface water	Eagle Mountain Mine, near northwest portion of Riverside East SEZ
Grazing Lease Rice Valley Allotment	EA Issuance of 10-year Grazing Lease; Jan. 2007 (CA-660-EA06-55)	Land use, surface water	Riverside County

^a Projects in later stages of agency environmental review and project development.

^b Project approved. Updated information will be included in the Final EIS. See http://www.blm.gov/wo/st/en/ prog/energy/renewable_energy/fast-track_renewable.html for details.

Renewable Energy Development

5 Several recent executive and legislative actions in California have addressed renewable 6 energy development within the state. In November 2008, Governor Schwarzenegger signed 7 E.O. S-14-08 to streamline California's renewable energy project approval process and increase 8 the state's RPS to the most aggressive in the nation—at 33% renewable power by 2020. On

9 September 15, 2009, the Governor issued a second E.O., now requiring that 33% of all electrical

1	energy produced in the state be from renewable energy sources by the year 2020. The E.O.
2	directed the CARB to adopt regulations increasing Camornia's RPS to 35% by 2020.
3	
4	In 2009, the California Legislature drafted bills requiring that electrical energy
2	production meet a standard of 33% from renewable sources. On October 12, 2009,
6	Governor Schwarzenegger vetoed two bills from the California Legislature on electrical
7	energy generated by renewable sources in favor of an alternative plan that would remove
8	limits on the amount of renewable power utilities could buy from other states (African
9	American Environmentalist Association 2009).
10	
11	
12	Solar Energy. Table 9.4.22.2-1 lists one project on private land (Rice Solar Energy), one
13	project on county land (Tessera Solar), and four foreseeable solar energy projects on public land,
14	the so-called fast-track projects. Fast-track projects are those on public lands for which the
15	environmental review and public participation process is under way and the applications could
16	be approved by December 2010 (BLM 2010c). These projects are considered foreseeable
17	because the permitting and environmental review processes are under way. The locations of the
18	Rice and fast-track projects are shown on Figure 9.4.22.2-1. Other, more numerous, pending
19	regular-track applications shown in the figure are discussed collectively at the end of this section.
20	
21	• Rice Solar Energy. The proposed Rice Solar Energy Project would be a power
22	tower facility with an output of 150 MW constructed on 1,410 acres (6 km ²)
23	of a 2,560-acre (10-km ²) parcel on privately owned land in unincorporated
24	eastern Riverside County, California (CEC 2009b). Access to the site would
25	be from State Route 62 located just north of the site. The site is about 15 mi
26	(24 km) north of the eastern portion of the Riverside East SEZ. Land
27	surrounding the project site consists mostly of undeveloped open desert
28	owned by the Federal Government and managed by the BLM.
29	
30	The facility would employ a liquid salt heat transfer and storage medium and
31	a conventional steam turbine. Propane would be used for auxiliary heating,
32	and no natural gas pipeline to the facility would be needed. The facility would
33	use an air-cooled condenser (dry cooling). Water use during the proposed
34	2011 to 2013 (30-month) construction period would be 780 ac-ft/yr
35	$(0.96 \text{ million m}^3/\text{yr})$. Process water requirements for facility operations,
36	commencing by the end of 2013, are estimated to be up to 180 ac-ft/yr
37	$(0.22 \text{ million m}^3/\text{yr})$, assuming an operating capacity factor of 37%. A
38	mostly local construction workforce (averaging 280 workers) would be used.
39	Operations and maintenance of the facility would employ an estimated
40	47 workers (CEC 2009b).
41	
42	Surveys found seven desert tortoises, along with shell-skeletal remains,
43	burrows, egg shell fragments, and scat present on the project site, along the
44	generator tie-line route, and within the 1-mi (1.6-km) wide zone surrounding
45	the project site. In addition, Western burrowing owl, Mojave fringe-toed
46	lizard, and loggerhead shrike were found to be present in or near the project

1 2

3

FIGURE 9.4.22.2-1 Location of Renewable Energy Proposals on Public Land within a 50-mi (80-km) Radius of the Proposed Riverside East SEZ

1	
1	area. Several California listed sensitive plant species were found on the
2	area. Several Camolina-instea sensitive plain species were found on the
3	project site of along the proposed transmission line KOW (CEC 2009a).
4 5	• Tassara Solar on County of Riverside Land In June 2009 Tessers Solar was
5	salacted by the County of Piverside to develop solar operations on
0	selected by the County of Riverside to develop solar energy projects of
/ 0	county-owned fand at closed fandrins and on undeveloped fand adjacent to
0	county anports (Electric Energy Online 2009).
9	The selen was is to second estiliantly CCD disk and in a (i.e. Som Catalyan)
10	The solar projects would utilize the CSP dish engine (i.e., SunCatchers)
11	technology and would develop as much as 500 MW of solar power on County
12	of Riverside land. The company is currently analyzing the parcels of available
13	land to determine the best location for the projects.
14	
15	• First Solar Desert Sunlight (CACA 48649). This proposed fast-track project
16	would use a thin-film PV technology in a facility with an output of 550 MW.
17	The project site is located on approximately 9,480 acres (38.4 km ²) and would
18	disturb up to 4,400 acres (17.8 km ²) of public land in Riverside County,
19	California, approximately 6 mi (8 km) north of the community of Desert
20	Center, California, and about 7 mi (11 km) north of the I-10 transmission
21	corridor (BLM 2009e). The facility and most of the corridor for the project's
22	230-kV generation interconnection transmission line would be located in the
23	western portion of the proposed Riverside East SEZ. The project would
24	include the solar facility, an on-site substation, a 230-kV interconnection line,
25	and a planned 230- to 500-kV Red Bluff Substation. The Red Bluff Substation
26	would connect the project to the Southern California Edison (SCE) regional
27	transmission grid.
28	
29	The proposed facility would have an estimated water requirement of
30	27 ac-ft/yr (33,000 m^3 /yr) during its 2011 to 2013 construction period
31	and only 4 ac-ft/yr (5,000 m ³ /yr) thereafter for operation (BLM and
32	CEC 2010a). On the basis of estimated employment levels for PV facilities
33	(Section 9.4, 19.2.2), construction of the facility would employ about
34	220 people, while operations would require an estimated 11 full-time
35	employees.
36	·
37	• Solar Millennium Palen Solar Project (CACA 48810) This proposed fast-
38	track project is a parabolic trough facility with an output of 484 MW. The
39	project site would be on public land within the western portion of the
40	proposed Riverside East SEZ approximately 10 mi (16 km) east of Desert
41	Center California adjacent to the I-10 transmission corridor. The proposed
	facility would occupy approximately 2 800 acres (15.4 km ²) within a
72 13	proposed 5 200 acre (20.0 km ²) ROW. The facility would employ two
4J 44	adjacent and independent solar troughs with nominal output of 250 MW cach
++ 15	aujacent and muchendent solar doughs with nonlinal output of 250 MW each.
4J	It would employ dry cooling and would require about 500 ac- π/yr
40	(0.57 million m ² /yr) of groundwater drawn from two on-site wells for mirror

1		washing and other uses. Water requirements during the proposed construction
2		period of 2011 to 2013 are estimated to be 480 ac-ft/yr (0.59 million m ³ /yr).
3		The project would disturb about 3,000 acres (12 km ²). The facility would
4		connect to the planned Red Bluff substation, to be built approximately 10 mi
5		(16 km) west of the project location. An auxiliary boiler would be fired with
6		propane. An average of 566 workers would be employed during construction,
7		and 134 full-time employees would be required for operations (BLM and
8		CEC 2010a).
9		
10		Special status species of concern include desert tortoise and Western
11		burrowing owl. No desert tortoises and only low-quality tortoise habitat were
12		observed during spring 2009 surveys. Cultural surveys have identified both
13		prehistoric and historic cultural resources (BLM and CEC 2010a)
14		premistorie and mistorie editarial resources (DEM and CEC 2010a).
15	•	Solar Millennium Rhythe Solar Project (CACA 48811) This proposed fast-
16		track project would be a parabolic trough facility with an output of 986 MW
17		The project site would be on public land within the eastern portion of
19		proposed Riverside East SEZ approximately 8 mi (13 km) west of Riversi
10		California adjagant to the L 10 transmission corridor. The proposed facility
19 20		California, adjacent to the 1-10 transmission contrast. The proposed facility would accurate approximately 0.480 across (28.4 km^2) and disturb about
20		7 020 serves (28.5 1m ²). The facility would employ four adjacent and
21		7,050 acres (28.5 km ²). The facinity would employ four adjacent and
22		independent solar troughs with nominal output of 250 M w each. It would $\frac{1}{2}$
23		employ dry cooling and would require about 600 ac-n/yr (0.74 million m ³ /yr)
24		of groundwater drawn from two on-site wells for mirror washing and other
25		uses. Water requirements during the proposed 2011 to 2015 construction
26		period are estimated to be 620 ac-ft/yr (0.77 million m ⁵ /yr). The facility
27		would connect to a planned new substation, the Colorado River Substation, to
28		be built approximately 5 mi (8 km) to the southwest of the project location. To
29		supply auxiliary boilers, a 10-mi (16-km) long natural gas pipeline would be
30		built to connect to an existing pipeline south of I-10; about 8 mi (13 km) of
31		the line would be on the project ROW. An average of 604 workers would be
32		employed during construction of the facility and 221 full-time employees
33		would be required for operations (BLM and CEC 2010b).
34		
35		Project construction would result in a direct loss of low- to moderate-quality
36		habitat for desert tortoise over the project site and would fragment and
37		degrade adjacent native plant and wildlife communities. The project could
38		also promote the spread of invasive non-native plants and desert tortoise
39		predators such as ravens. Five species of California-listed sensitive plant
40		species are present. Habitat is also present for Western burrowing owl,
41		loggerhead shrike, Le Conte's thrasher, black-tailed gnatcatcher, and
42		California horned lark (BLM and CEC 2010b).
43		
44	•	NextEra Genesis Ford Dry Lake Solar Project (CACA-4880). This proposed
45		fast-track project consists of two independent solar trough facilities using wet
46		cooling with a total output of 250 MW. The project site would be located on

1	public land within the central portion of the proposed Riverside East SEZ,
2	approximately 20 mi (32 km) west of Blythe, California, north of I-10 and
3	near Dry Lake, California. The proposed facility would occupy 4.640 acres
4	(18.8 km^2) and directly affect 1 800 acres (7.3 km ²). The proposed facility
5	would employ wet cooling and would require about 1 640 ac-ft/vr
6	(2.0 million m^3/yr) of cooling water that would be obtained from on-site
0	wells. Water requirements during the proposed construction period of 2011 to
/ Q	were subscription where the proposed construction period of 2011 to 2012 are astimated to be 870 as $ft/yr (1.1 \text{ million } m^3/yr)$. The facility would
0	interconnect to the proposed Coloredo Diver Substation via a 220 kV on site
9	interconnect to the proposed Colorado River Substation via a 250-KV off-site
10	Switchyard and a new transmission line. The new transmission line metural goaline
11	Energy Project transmission line. The new transmission line, natural gas line,
12	and access road would be built in the same corridor that would exit the
13	southern site boundary and extend about 7 mi (11 km) to the south. An
14	average of 646 workers would be employed during construction of the facility
15	and 40 to 50 full-time employees would be required for operations (BLM and
16	CEC 2010c).
17	
18	Biological surveys have identified a number of special status species,
19	including Mojave and Colorado fringe-toed lizards, loggerhead shrike,
20	Western burrowing owl, short-eared owl, prairie falcon, and northern harrier.
21	While no live desert tortoise were found, burrows and bones were present on
22	the site, and tracks and carcasses in the surrounding area. As many as
23	15 cultural resource sites would be directly affected by construction of the
24	proposed Genesis Solar Energy Project (BLM and CEC 2010c).
25	
26 •	Pending Solar ROW Applications on BLM-Administered Lands. In addition to
27	the four fast-track solar projects described above, a number of regular-track
28	ROW applications for solar projects have been submitted to the BLM that
29	would be located either within the Riverside East SEZ or within 50 mi
30	(80 km) of the SEZ (BLM 2010b) Table 9.4.22.2-2 provides a list of all solar
31	projects that had pending applications submitted to BLM as of March 2010
32	Figure 9.4.22.2-1 shows the locations of these applications
33	1 Gure 7. 1.22.2 1 shows the rocations of these approactions.
34	Within 50 mi (80 km) of the proposed Riverside East SEZ there are 29 active
35	solar applications. Within the boundaries of the Riverside East SEZ, there are
35	11 nonding regular track applications: they are administered through the Dalm
20 27	Springs Southooset Field Office
<i>31</i>	Springs-Southcoast Field Office.
38	
39	The likelihood of any of the regular-track ROW application projects actually
40	being developed is uncertain but is generally assumed to be less than that for
41	tast-track applications. The projects are all listed in Table 9.4.22.2-2 for
42	completeness and as an indication of the level of interest in development of
43	solar energy in the region. Some number of these applications would be
44	expected to result in actual projects. Thus, the cumulative impacts of these
45	potential projects are analyzed in their aggregate effects.
46	

1 Wind Energy. Table 9.4.22.2-2 lists ROW grant applications for four pending 2 authorization of wind testing, three authorized for wind site testing, and two wind development 3 facilities within a 50-mi (80-km) radius of the proposed Riverside East SEZ. The actual 4 development of all nine proposals is considered pending, however, since they await authorization 5 of development of wind facilities. As shown in Figure 9.4.22.2-1, the locations of the 6 applications lie generally northwest to southwest and within 30 mi (48 km) of the SEZ. 7 8 The likelihood of any of the regular-track wind projects actually being developed is 9 uncertain; the projects are listed to give an indication of the level of interest in development of 10 wind energy in the region. Most are in the wind testing stage, and Environmental Assessments necessary for project approval are being prepared. 11 12 13 14 Geothermal Energy. Imperial County is immediately south of the Riverside East SEZ and contains some of the most productive geothermal resource areas in the United States. Within 15 16 the El Centro Field Office management area, 118,720 acres (480 km²) is identified as having geothermal resource potential (BLM 2008b). This acreage is divided into seven KGRAs: Dunes, 17 18 East Brawley, East Mesa, Glamis, Heber, Salton Sea, and South Brawley. 19 20 There are three producing and two authorized geothermal leases within a 50-mi (80-km) 21 radius of the proposed Riverside East SEZ, as listed in Table 9.4.22.2-1 and shown in 22 Figure 9.4.22.2-1. All of these leases are within Imperial County. The producing geothermal 23 leases are about 50 mi (80 km) south of the SEZ and within the East Mesa KGRA. The 24 producing leases CACA 6217, CACA 6218, and CACA 17568 are all owned by Orresource 25 Geothermal. Of the authorized geothermal leases, CACA 29853X is located about 45 mi (72 km) southwest of the Riverside East SEZ and CACA 18092X is located about 50 mi (80 km) south. 26 27 28 29 **Transmission and Distribution** 30 31 Blythe Energy Project Transmission Line Modifications. Blythe Energy LLC is 32 proposing transmission line modifications that would allow electrical output from Blythe Energy 33 Project, a 520-MW natural gas-fired electric generating facility, to be delivered to the southern 34 California International Standards Organization-controlled electrical transmission system. There 35 are two components to the proposed BEP transmission line modifications: 36 37 Buck to Julian Hinds transmission line component: 38 39 - Upgrades to the Buck Substation. 40 41 Installation of approximately 67 mi (108 km) of new 230-kV transmission 42 line between the Buck Substation located adjacent to the Blythe Energy 43 Project and the Julian Hinds Substation located approximately 60 mi 44 (97 km) to the west. 45

TABLE 9.4.22.2-2Pending Renewable Energy Project Applications on BLM-Administered Land within 50 mi of theRiverside East SEZ^a

		Application	Size			
Serial No.	Project Name	Received	(acres ^D)	MW	Technology	Field Office
~ ~ ~ ~ ~						
Solar Applications						
AZA 034335	Boulevand Associates, LLC	June 8, 2007	24,221	500	CSP/Trough	Lake Havasu: Yuma
AZA 034427	Pacific Solar Invst., Inc. (Iberdrola)	Sept. 6, 2007	32,000	2,000	CSP/Trough	Yuma
AZA 034554	Nextlight Renewable Power, LLC	March 26, 2008	20,699	500	CSP/Trough	Yuma
AZA 034560	Nextlight Renewable Power, LLC	March 26, 2008	15,040	500	CSP/Trough	Yuma
AZA 034666	SolarReserve, LLC (Quartzsite)	May 27, 2008	25,204	100	CSP/Tower	Yuma
AZA 034936	Wildcat Quartzsite, LLC	Jan. 29, 2009	11,960	800	CSP/Tower	Yuma
AZA 035134	E-on Climate & Renewables (La Posa)	July 2, 2009	1,780	NA	NA	Yuma
AZA 035137	E-on Climate & Renewables (Castle Dome)	July 2, 2009	590	100	PV	Yuma
CACA 48728	FPL Energy	Jan. 31, 2007	20,608	250	CSP	Palm Springs-Southcoast
CACA 48808	Chuckwalla Solar, LLC	Sept. 15, 2006	4,099	200	PV	Palm Springs-Southcoast
CACA 48818	First Solar (Desert Opal)	Feb. 26, 2007	15,824	1,205	PV	Barstow
CACA 49002	Leopold Company, LLC	Apr. 2, 2007	35,466	4,100	CSP	Needles
CACA 49006	Boulevard Associates, LLC	May 14, 2007	12,046	1,000	CSP	Needles
CACA 49008	Boulevard Associates, LLC	May 14, 2007	35,639	1,000	CSP	Needles
CACA 49097	Bull Frog Green Energy, LLC	Oct. 1, 2008	6,634	2,500	PV	Palm Springs-Southcoast
CACA 49150	BCL & Associate, Inc.	July 17, 2007	5,464	500	PV	El Centro
CACA 49397	First Solar (Desert Quartzite)	Sept. 28, 2007	7,548	600	PV	Palm Springs-Southcoast
CACA 49430	Iberdrola Renewables, Inc.	Dec. 8, 2008	13,373	N/A	CSP	Needles
CACA 49432	PG&E	Sept. 24, 2007	5,315	800	Undecided	Needles
CACA 49488	EnXco, Inc.	Nov. 13, 2007	1,327	300	CSP	Palm Springs-Southcoast
CACA 49490	EnXco, Inc.	Nov. 13, 2007	20,608	300	CSP	Palm Springs-Southcoast
CACA 49491	EnXco, Inc.	Nov. 13, /2007	1,327	300	CSP	Palm Springs-Southcoast
CACA 49493	Solel, Inc.	March 27, 2008	8,750	500	CSP	Palm Springs-Southcoast
CACA 49494	Solel, Inc.	Nov. 6, 2007	7,317	500	CSP	Palm Springs-Southcoast
CACA 49615	Pacific Solar Investments, Inc.	Sept. 4, 2007	17,807	1,500	PV	El Centro
CACA 49702	Bull Frog Green Energy, LLC	June 1, 2008	22,717	2,500	PV	Palm Springs-Southcoast
CACA 49813	Iberdrola Renewables, Inc.	April 1, 2008	12,833	1,000	CSP	Needles
CACA 50379	Lightsource Renewables, LLC	Aug. 8, 2008	2,446	550	CSP	Palm Springs-Southcoast
CACA 51369	Invenergy Solar Development, LLC	Sept. 16, 2009	1,081	50	PV	El Centro

TABLE 9.4.22.2-2 (Cont.)

Serial No.	Project Name	Application Received	Size (acres ^b)	MW	Technology	Field Office
Wind Applications						
Pending Wind Site Testing						
CACA 50158	Little Mountain Wind Power, LLC	May 12, 2008	15,000	_ c	Wind	Needles
CACA 50711	Padoma Wind Power	March 17, 2009	23,829	_	Wind	Barstow
CACA 50770	-	-	_	_	Wind	-
CACA 51947	L.H. Renewables, LLC	March 10, 2010 Application Authorized	9,069	-	Wind	El Centro
Authorized Wind Site Testing						
CACA 47751	Renewergy, LLC	Jan. 23, 2007	11,187	-	Wind	El Centro
CACA 48272	Imperial Wind	Aug. 16, 2010	1,960	-	Wind	El Centro
CACA 51062	John Deere Renewables, LLC	April 29, 2009	6,256	-	Wind	El Centro
Pending Wind Developoment						
Facility						
CACA 51664	L.H. Renewables, LLC	Dec. 8, 2009	3,500	_	Wind	Palm Springs
CACA 52078	Imperial Wind	May 28, 2010	2,054	65	Wind	El Centro

^a Information taken from pending and authorized wind energy projects listed on BLM California Desert District Web site (BLM 2010h) and downloaded from GeoCommunicator (BLM and USFS 2010b); total solar acres = 389,723 total solar MW = 24,137; total wind acres and MW not available.

^b To convert acres to km^2 , multiply by 0.004047.

^c A dash indicates data not available.

1 2	 The proposed transmission line route would generally follow SCE's existing 500-kV Devers-Palo Verde transmission line.
3	
4	 Transmission line structures would be concrete, single-pole structures.
5	
6	 Upgrades to the Julian Hinds Substation.
7	
8	 Buck to Devers-Palo Verde transmission line component:
9	
10	 Upgrades to Buck Substation.
11	
12	 Installation of approximately 7 mi (11 km) of a new 230-kV transmission
13	line (initially operated at 161 kV) between the Buck Substation and SCE's
14	existing Devers-Palo Verde 500-kV transmission line.
15	
16	 Transmission line structures would be concrete single-pole structures.
17	
18	 Construction of a new 161-kV to 500-kV substation at the point of
19	interconnection with SCE's existing Devers-Palo Verde 500-kV
20	transmission line (CEC 2010a).
21	
22	The CEC Web site indicates that Blythe Energy is currently making the transmission line and
23	substation modifications and expects construction to be completed in 2010 (CEC 2010a).
24	
25	
26	Devers to Palo Verde No.2. A second Devers-Palo Verde line has been proposed that will
27	run adjacent to the existing line south of I-10 and the proposed Riverside East SEZ in an existing
28	corridor. The 500-kV line would run 230 mi (370 km) following the existing Devers-Palo Verde
29	500-kV line from San Bernardino in California to the Harquahala Generating Station near the
30	Palo Verde Nuclear Plant in Arizona. However, the Arizona Corporation Commission has denied
31	the Arizona portion of the line. In California, the line would run a total of 153 mi (245 km) from
32	the Colorado River Substation to the Devers Substation and end at Valley Substation. The CPUC
33	approved the California portion of the line on Nov. 20, 2009 (CPUC 2009). Southern California
34	Edison is expecting to begin construction of the California portion of the line in 2011 and have
35	the line in service in 2013. Construction is pending ISO satisfaction with conditions for
36	interconnection agreements, while the project still requires approval in a BLM ROD.
37	
38	
39	9.4.22.2.2 Other Actions
40	
41	
42	Other Foreseeable Actions
43	
44	
45	Cadiz Valley Dry-Year Supply Project. The Cadiz Valley Dry-Year Supply Project is
46	a water storage and supply program that will provide southern California with as much as

1 150,000 ac-ft/yr (185 million m³/yr) of water during years of droughts, emergencies, or other 2 periods of urgent need by utilizing the aquifer system that underlies Cadiz's 35,000 acres (142 km²) of land holdings in the Cadiz and Fenner Valleys of eastern San Bernardino County 3 4 (Cadiz, Inc. 2008), about 40 mi (64 km) north of the western portion of the Riverside East SEZ. 5 Historically, such dry periods occur in about 3 out of every 10 years. In any given dry year, this 6 water would be enough to serve more than 1.2 million people. The project would involve 7 taking water from the CRA during high rainfall years and storing it in aquifer systems to supply 8 southern California's water needs during periods of severe drought (Cadiz Inc. 2008). 9 10 The project was the subject of congressional hearings in August 2009 regarding Cadiz, Inc.'s controversial proposal to use a 42-mi (68-km) long stretch of a Mojave railway 11 12 line ROW for the water pipeline (Chance of Rain 2009). A portion of the water pipeline would 13 cross the extreme southern part of the Iron Mountain SEZ, about 20 mi (32 km) north of the 14 Riverside East SEZ. 15 16 17 **Proposed West Chocolate Mountains Renewable Energy Evaluation Area.** In a

February 10, 2010, NOI in the *Federal Register*, the BLM El Centro Field Office announced its
intent to prepare an EIS to consider an amendment to the California Desert Conservation Area
Plan to identify whether 21,300 acres (86.2 km²) of BLM-administered lands within the West
Chocolate Mountains area should be made available for geothermal, solar, or wind energy
development (BLM 2010a). The Evaluation Area lies about 20 mi (32 km) southwest of the
proposed Riverside East SEZ in Riverside County, east of Niland and northeast of El Centro,
California.

25 26

Eagle Crest Hydroelectric Plant. Eagle Crest Energy company proposes to construct and
 operate a 1,300-MW pumped storage hydroelectric plant at the Eagle Mountain Mine located
 near the northwest portion of the Riverside East SEZ about 10 mi (16 km) north of Desert
 Center. A draft license application for project approval was submitted to the FERC in June 2008
 (Eagle Crest Energy 2008a). In September 2008, Eagle Crest Energy submitted a request to the
 California Water Resources Control Board for water qualification certification pursuant to
 Section 401 of the CWA (Eagle Crest Energy 2008b).

- The pumped storage facility would be constructed at the old Eagle Mountain Mine site. The facility would use former mine pits (i.e., upper and lower reservoirs), which would be linked by subsurface tunnels to convey water through four reversible 325-MW turbines. Water would be pumped alternately to the upper storage reservoirs and released to the lower reservoirs. The lower reservoirs would initially be filled with 25,000 ac-ft (30.8 million m³) of water. The system is estimated to lose some water to seepage and evaporation and require makeup water estimated at 2,400 ac-ft/yr (3.0 million m³/yr).
- 42

Eagle Crest Energy would build transmission lines to convey power to a new substation
that would in turn connect to the 500-kV Palo Verde-Devers transmission line located about
10 mi (16 km) from the project site (Eagle Crest Energy 2009).

Other Ongoing Actions

3 4 *Mining.* Several mining claims are active north of the eastern portion of the Riverside 5 East SEZ. The BLM GeoCommunicator Database showed mining densities of 26 to 50 per 6 section within the five townships in the northern portions of the eastern part of the SEZ. 7 Two townships along the southern portion of the eastern part adjacent to I-10 have mine claim 8 densities of 51 to 100 in each township. Mine claim densities in townships in the western part 9 of the SEZ vary from 1 to 10 in the two townships located northwest of State Route 177. The 10 locations of individual mine claims and their potential conflict with solar energy projects will require additional analysis by solar energy companies and by decision-makers prior to project 11 12 approval. Developers may have to purchase mine claims in order to site solar energy facilities. 13

- Grazing
 - *Ten-Year Grazing Lease Rice Valley Allotment.* The BLM prepared an EA on a proposal for a 10-year lease on the Rice Valley Allotment to authorize sheep grazing on 74,740 acres (302 km²) of public land located approximately 26 mi (42 km) northwest of Blythe in Riverside County (BLM 2007a).
 - 9.4.22.3 General Trends
 - 9.4.22.3.1 Population Growth

Table 9.4.22.3-1 presents recent and projected populations in the 50-mi (80-km) radius ROI (i.e., the ROI is Riverside County) and in California as a whole. Population in the ROI stood at 2,103,050 in 2008, having grown at an average annual rate of 3.8% since 2000. The growth rate for the ROI was higher than that for California (1.4%) over the same period.

The ROI population is expected to increase to 2,965,113 by 2021 and to 3,085,643 by
2023 (California Department of Finance 2010).

36 37

38

1

2

14 15

16 17

18

19

20

21 22 23

24 25 26

27

9.4.22.3.2 Energy Demand

39 The growth in energy demand is related to population growth through increases in 40 housing, commercial floorspace, transportation, manufacturing, and services. With population 41 growth expected in Imperial, Riverside, and San Bernardino Counties between 2006 and 2016, 42 an increase in energy demand is also expected. However, the EIA projects a decline in per-capita 43 energy use through 2030, mainly because of improvements in energy efficiency and the high cost 44 of oil throughout the projection period. Primary energy consumption in the United States between 2007 and 2030 is expected to grow by about 0.5% each year; the fastest growth is 45 46 projected for the RCI sector, which is expected to grow by about 0.5% (residential), 0.4% 47 (commercial), and 0.1% (industrial) each year (EIA 2009).

Location	2000	2008ª	Average Annual Growth Rate, 2000–2008 (%)	2021	2023
Riverside County	1,559,039	2,103,050	3.8	2,965,113	3,085,643
California	34,105,437	38,129,628	1.4	44,646,420	45,667,413

TABLE 9.4.22.3-1 ROI Population for the Proposed Riverside East SEZ

^a Data are averages for the period 2006 to 2008.

Sources: U.S. Bureau of the Census (2009f); California Department of Finance (2010).

9.4.22.3.3 Water Availability

5 The Riverside East SEZ is located within the Mojave Desert, which is characterized by 6 extreme daily temperature ranges with low precipitation and humidity (CDWR 2009); annual 7 precipitation is between 4 and 6 in./yr (10 and 15 cm/yr) (CDWR 2003). 8

- Palen Lake and Ford Dry Lake are located in the SEZ. Palen Lake is a wet playa having
 groundwater located near the surface and covering an area of 4,260 acres (17 km²) with only
 750 acres (3 km²) within the boundaries of the SEZ. Ford Dry Lake is a dry lakebed covering
 4,400 acres (18 km²), most of which is within the SEZ boundaries. The primary surface water
 features within the proposed Riverside East SEZ are several ephemeral drainages coming off
 the surrounding mountains.
- 15

21

1 2 3

4

16 The SEZ is located within two groundwater basins: Chuckwalla Valley and Palo Verde 17 Mesa. There are no restrictive structures between the two groundwater basins. The total 18 thickness of the principal aquifer is on the order of 1,200 ft (366 m) (CDWR 2003), and the 19 alluvium layer thickness is on the order of 100 to 150 ft (30 to 46 m) in the region of the SEZ 20 (Metzger et al. 1973).

Groundwater recharge in the Chuckwalla Valley is by subsurface underflow and from direct infiltration of precipitation runoff. Estimates of natural recharge have not been quantified in the Chuckwalla Valley. Natural recharge is estimated to be 800 ac-ft/yr (987,000 m³/yr) in the neighboring Palo Verde Mesa and the Cadiz Valley, which have similar climate and precipitation conditions (CDWR 2003). Recharge from precipitation runoff is not suspected to be significant given the limited precipitation in the region (Metzger et al. 1973).

Groundwater discharge in the Chuckwalla Valley is primarily by evapotranspiration at
Palen Lake and subsurface underflow to the Palo Verde Mesa; the evapotranspiration rate at
Palen Lake is unknown, and the subsurface underflow is estimated to be 400 ac-ft/yr
(493,000 m³/yr) to Palo Verde Mesa (CDWR 2003).

1 2	Groundwater withdrawal rates were 9,100 ac-ft/yr (11.2 million m^3/yr) in 1966 (CDWR 2003), and between 4,400 and 5,700 ac-ft/yr (5.4 million and 7.0 million m^3/yr) during dry and
3	wet years occurring in the period 1998 to 2001 (CDWR 2005). The majority of groundwater
4	withdrawals in the region of the proposed SEZ are for agricultural and domestic uses.
5	
6	Groundwater surface elevations are routinely monitored in the Chuckwalla Valley and
7	Palo Verde Mesa. Depth to groundwater ranges between 80 and 270 ft (24 and 82 m) below the
8	surface across the Chuckwalla Valley and into the Palo Verde Mesa (USGS 2010b).
9	Groundwater surface elevations have remained steady for several decades (USGS 2010c,
10	monitoring wells 334438115211101, 333939114411501).
11	
12	Groundwater well yields average 1,800 gpm (6,814 L/min) with a maximum of
13	3,900 gpm (14,760 L/min) in the Chuckwalla Valley. However, the majority of the groundwater
14	extractions are clustered on the western and eastern edges of the valley around Desert Center and
15	the Palo Verde Mesa. It is suspected that further groundwater development in this region may
16	lead to declines in groundwater elevations (Metzger et al. 1973; Steinemann 1989).
17	
18	In 2005, water withdrawals from surface waters and groundwater in Riverside County
19	were 1.4 million ac-ft/yr (1.7 billion m ³ /yr), of which 74% came from surface waters and 26%
20	from groundwater. The largest water use category was municipal and domestic supply, at
21	519,000 ac-ft/yr (640 million m^3/yr). However, the majority of this water is used in the larger
22	cities located in the western portion of Riverside County. Agricultural water uses accounted for
23	874,000 ac-ft/yr (1.1 billion m ³ /yr), and industrial water uses on the order of 7,000 ac-ft/yr
24	(8.6 million m^{3}/yr) (Kenny et al. 2009). The primary water use in the eastern portion of
25	Riverside County relevant to the proposed Riverside East SEZ is for agriculture, representing
26	59 to 77% of total groundwater withdrawals during the dry and wet years, respectively, in the
27	period 1998 to 2001 (CDWR 2005).
28	
29	

29 30

31

9.4.22.3.4 Climate Change

32 Global warming continues to affect many desert areas in the southwestern United States 33 with increased temperature and prolonged drought during the past 20 to 30 years. A report on 34 global climate change in the United States prepared on behalf of the National Science and 35 Technology Council by the U.S. Global Research Program documents current temperature and precipitation conditions and historic trends, and projects impacts during the remainder of the 36 twenty-first century through modeling using low and high scenarios of GHG emissions. The 37 38 report summarizes the science of climate change and the recent and future impacts of climate 39 change on the United States (GCRP 2009). The following excerpts from this report indicate that 40 there has been a trend for increasing global temperature and decrease in annual precipitation in desert regions: 41

- 42
- 43 44
- Average temperature in the United States increased more than 2° F (1.1°C) over the period 1957 to 2007.
- 45

1	•	Southern areas, particularly desert regions of southern Arizona and
23		have more severe periods of drought during the remainder of the twenty-first
4		century Much of the Southwest has experienced drought conditions since
5		1999. This period represents the most severe drought in 110 years.
6		
7	•	The incidence of wildfires in the western United States has increased in recent
8		decades, partly because of increased drought.
9		
10	•	Temperature increases in the next 20 to 30 years are expected to be strongly
11		correlated with past emissions of heat-trapping gases, such as carbon dioxide
12		and methane.
13		
14	•	Many extreme weather events have increased both in frequency and intensity
15		during the last 40 to 50 years. Precipitation and runoff are expected to
16		decrease in the Southwest in spring and summer based on current data and
17		anticipated temperature increases. Water use will increase over the next
18		several decades as the population of southern California grows, resulting in
19		trade-offs between competing uses.
20		
21	•	Climate project models also show a 10 to 20% decline in runoff in California
22		and Nevada for the period of 2041 to 2060 compared with data from 1901 to
23		1970 used as a baseline.
24 25	•	In the Southwest average temperatures increased about $1.5^{\circ}E(0.8^{\circ}C)$ in
25 26	•	2000 compared to a baseline period of 1960 to 1070. By the year 2020
20		temperatures are projected to rise 2 to 3° E (1.1 to 1.7°C) above the 1960 to
28		1979 haseline
29		1777 ousenne.
30	Ind	creased global temperatures from GHG emissions will likely continue to exacerbate
31	drought in	the southern California deserts. The State of California has prepared several reports
32	of climate	change impact predictions through the remainder of the twenty-first century that
33	address to	pics such as economics, ecosystems, water use/availability, impacts on Santa Ana
34	winds, ag	riculture, timber production, and snowpack. The California climate change portal Web
35	site (http:/	//www.climatechange.ca.gov/publications/cat/index.html) lists the Climate Action
36	Team repo	orts that are submitted to the Governor and state legislature. These reports are included
37	as final pa	pers of the California Energy Commission's Public Interest Energy Research Program.
38		
39		
40	9.4	4.22.4 Cumulative Impacts on Resources
41		
42	Th	is section addresses potential cumulative impacts in the proposed Riverside East SEZ
43	on the bas	is of the following assumptions: (1) because of the relatively large size of the proposed
44	SEZ (mor	e than 30,000 acres [121 km ²]), as many as three projects could be constructed at a
45	time, and	(2) maximum total disturbance over 20 years would be $162,317 \text{ acres} (657 \text{ km}^2) (80\%)$
46	of the enti	re proposed SEZ). For analysis, it is also assumed that no more than 3,000 acres

1 (12.1 km^2) would be disturbed per project annually and 250 acres (1.01 km^2) monthly on the 2 basis of construction schedules planned in current applications. An existing 500-kV transmission 3 line runs east-west along I-10 and parallel to the southern SEZ boundary and a 230-kV line 4 passes through the far western section of the SEZ; therefore, for this analysis, the impacts of 5 construction and operation of new transmission lines outside of the SEZ were not assessed. 6 Regarding site access, because I-10 passes along the southern edge of the SEZ and there are 7 several exits from I-10 as it passes by and through the SEZ, no major road construction activities 8 outside of the SEZ would be needed for development to occur in the SEZ. 9 10 Cumulative impacts in each resource area that would result from the construction, operation, and decommissioning of solar energy development projects within the proposed SEZ 11 when added to other past, present, and reasonably foreseeable future actions described in the 12 13 previous section are discussed below. At this stage of development, because of the uncertainties 14 of the future projects in terms of location within the proposed SEZ, size, number, and the types of technology that would be employed, the impacts are discussed qualitatively or semi-15 16 quantitatively, with ranges given as appropriate. More detailed analyses of cumulative impacts 17 would be performed in the environmental reviews for the specific projects in relation to all other

18 existing and proposed projects in the geographic areas.

19 20

21

22

9.4.22.4.1 Lands and Realty

Although the proposed Riverside East SEZ lies adjacent to the highly developed I-10
corridor, which includes a number of major transmission lines, roads, pipelines, and other
infrastructure, much of the land within the proposed SEZ exhibits a rural character
(Section 9.4.2.1). The SEZ contains only BLM-administered land, but numerous parcels of
private land are scattered throughout the SEZ or are located in near proximity. One section of
state land is surrounded by the SEZ.

29

30 Development of the SEZ would introduce a highly contrasting industrialized land use into 31 an area that is largely rural. In addition, numerous other renewable energy projects are proposed 32 within a 50-mi (80-km) radius of the Riverside East SEZ. As shown in Table 9.4.22.2-2 and 33 Figure 9.4.22.2-2, as many as 33 solar projects and 9 wind projects have pending applications 34 within this distance, with ROW applications for solar projects alone totaling more than 400,000 acres (1,600 km²), including more than 30,000 acres (120 km²) for six advanced solar 35 proposals on private and public land (Section 9.4.22.2.1). As a result of the potential and likely 36 37 development of other renewable energy projects and accompanying transmission lines, roads, 38 and other infrastructure within the geographic extent of effects, the character of a large portion of 39 the California Desert could be dramatically changed. The contribution to cumulative impacts of 40 utility-scale solar projects on public lands on and around the Riverside East SEZ could be significant, particularly if the SEZ is fully developed with solar projects. Development of the 41 42 public lands for solar energy production may also result in similar development on the state and 43 private lands in the immediate vicinity of the SEZ. 44

45 Construction of utility-scale solar energy facilities within the SEZ would preclude use of 46 those areas occupied by the solar energy facilities for other purposes. The areas that would be

1 occupied by the solar facilities would be fenced, and access to those areas by both the general 2 public and wildlife would be eliminated. 3

- 5 9.4.22.4.2 Specially Designated Areas and Lands with Wilderness Characteristics 6 7 The proposed Riverside East SEZ is located in the CDCA and surrounded by specially 8 designated areas, including Joshua Tree NP, seven designated Wilderness Areas, and seven 9 ACECs: Corn Springs, Alligator Rock, Chuckwalla DWMA, Chuckwalla Valley Dune Thicket, 10 Desert Lily Preserve, Mule Mountains, and Palen Dry Lake (Section 9.4.3.1). Construction of utility-scale solar energy facilities within the SEZ in combination with potential development of 11 12 other renewable energy projects and associated infrastructure would have the potential for 13 contributing to the adverse visual impacts on these specially designated areas. Development of the SEZ, especially full development, would be a dominant factor in the viewshed from large 14 15 portions of one or more of these areas. 16 17 Solar development both of the Riverside East SEZ and the Iron Mountain SEZ (which is about 25 mi [40 km] north), together with the Rice Solar Energy and Tessera Solar facilities on private land, would combine to adversely affect wilderness values in the Palen-McCoy, Rice Valley, Big Maria Mountains, Chuckwalla Mountains, and Little Chuckwalla Mountains WAs and in Joshua Tree NP. As of February 2010, 15 solar project applications were pending in the SEZ, including four fast-track solar applications, covering about 65% of the SEZ that, in
- 18 19 20 21 22 23 combination with projects within a 50-mi (80-km) radius, likely will result in cumulative effects, 24 particularly visual impacts, on sensitive areas.
- 25 26 27 9.4.22.4.3 Rangeland Resources 28

29 No livestock grazing now occurs in the SEZ; therefore, solar development of the area 30 would not contribute to any cumulative effects on livestock grazing. Likewise, since SEZ is not 31 located within either an HA or HMA, there would be no contribution to any adverse effects on 32 wild horses or burros.

33 34

35

36

4

9.4.22.4.4 Recreation

37 The Riverside East SEZ is quite flat, but it does offer diverse recreational opportunities, 38 especially during cooler months. Those opportunities include back country driving, camping, 39 rockhounding, hunting, and seasonal nature hikes. The area has been traditionally used by the 40 residents of Desert Center, Blythe, and urban areas to the west. It is anticipated there would not be a significant loss of recreational use caused by development of the Riverside East SEZ, 41 42 although some users would be displaced.

43

44 When SEZ development is considered in combination with other potential renewable 45 energy development within the region, a potential would exist for cumulative visual impacts on 46 recreational users of the specially designated areas surrounding the SEZ (Section 9.4.22.4.2).

There is substantial potential for loss of wilderness and scenic values throughout the California Desert wherever solar and wind energy development encroaches on wilderness or on other currently undeveloped areas. Cumulative impacts on recreational use associated with the loss of wilderness values and general open desert scenery also could occur. While the effects cannot be quantified, desert users might avoid areas dominated by industrial-type solar facilities. This situation could result a fundamental change in the way the California Desert has been traditionally used.

8 9

10

11

9.4.22.4.5 Military and Civilian Aviation

12 The proposed Riverside East SEZ is located under eight MTRs, which are part of a very 13 large, interconnected system of military aircraft training routes throughout the southwest. The development of any solar energy or transmission facilities that encroach into the airspace of 14 MTRs could create safety issues and could interfere with military training activities. While the 15 16 military has indicated that some portions of this SEZ are compatible with its existing use regardless of the proposed heights of solar facilities, while other portions should have height 17 18 limits, and some areas may be incompatible with existing military use. Potential solar 19 development occurring throughout the region, which is currently largely undeveloped, could 20 result in small cumulative effects on the system of MTRs. Such effects would be limited by 21 mitigations developed in consultation with the military.

22

Two civilian aviation facilities lie within 2 mi (3.2 km) of the SEZ and operations could be affected by solar facilities. In particular, fight operations at the Blythe Airport could be affected by facility structures and transmission lines, glint and glare, electromagnetic interference, bird attraction, and turbulence from thermal plumes above air-cooled condensers at the adjacent Blythe Solar Power Project (CACA 48811). While these effects may be low individually (CEC 2010c), small cumulative impacts on the Blythe Airport could result.

29 30

31

32

9.4.22.4.6 Soil Resources

33 Ground-disturbing activities (e.g., grading, excavating, and drilling) during the 34 construction phase of a solar project, including any associated transmission lines, would contribute to soil loss due to erosion. Construction of new roads within the SEZ or improvements 35 36 to existing roads would also contribute to soil erosion. During construction, operations, and 37 decommissioning of the solar facilities, worker travel and other road use would also contribute 38 to soil loss. These losses would be in addition to losses occurring as a result of disturbance 39 caused by other users in the area, including from potential construction of several other 40 renewable energy facilities, and recreational users, such as off-road vehicle enthusiasts. As discussed in Section 9.4.7.3, programmatic design features would be implemented to minimize 41 42 erosion and loss of soil during the construction, operation, and decommissioning phases of the 43 solar facilities and any associated transmission lines. Landscaping of solar energy facility areas 44 could alter drainage patterns and lead to increased siltation of surface water streambeds, in 45 addition to that caused by other development activities. Altering drainage patterns would in turn 46 impact vegetation in washes and associated habitats supported by existing flows. Even with the

expected design features in place, cumulative impacts from the disturbance of several large sites 2 and connecting linear facilities in the vicinity could be significant.

9.4.22.4.7 Minerals (Fluids, Solids, and Geothermal Resources)

Currently, there are seven mining claims but no geothermal or oil and gas leases within the SEZ. It is assumed there would be no cumulative effect on mineral resources. The SEZ is still open for discretionary mineral leasing, including leasing for oil and gas and other leasable minerals

9.4.22.4.8 Water Resources

1

3 4 5

6 7

8

9

10

11 12 13

14

15 The water requirements for development and operation of various utility-scale solar 16 energy technologies on the proposed SEZ are described in Section 9.4.9.2. If the SEZ is fully 17 developed over 80% of its available land area, the amount of water needed during the peak 18 construction year for the various solar technologies evaluated would be 4,541 to 6,732 ac-ft 19 (5.6 to 8.3 million m³). The amount of water needed during decommissioning would be similar 20 to or less than the amount used during construction. During operations, the amount of water 21 needed for all solar technologies evaluated would range from 914 to 488,000 ac-ft/yr (1.1 to 22 603 million m³/yr), with PV representing the lower end of this range. Since the availability of 23 groundwater (the primary water resource available to solar energy facilities in the SEZ) is 24 limited, it would not be feasible to obtain the upper end of the water requirements range. 25 Assuming the maximum historical groundwater withdrawal rate of 9,100 ac-ft/yr (11.2 million m^{3}/yr) from the underlying groundwater basins is dedicated to solar energy production, the 26 27 amount of wet-cooled trough or tower solar technology that could be built would be limited to on 28 the order of 1,800 MW, or only about 5% of SEZ capacity if unlimited water was available. For 29 dry-cooling options, about 12,800 MW could be produced, or about 39% and 71% of the 30 estimated SEZ capacity for trough and tower technologies, respectively. Sustainable groundwater 31 yields might represent even lower theoretical energy yields from these technologies. Conversely, 32 PV development would have minimal impacts on groundwater sources, while dish engine 33 technologies could be fully developed without exceeding recharge rates, particularly if water 34 conservation measures were taken for mirror washing. 35

36 As of February 2010, 15 solar project applications were pending in the SEZ, including 37 four fast-track solar applications, covering about 65% of the SEZ (Figure 9.4.22.-1). Impacts 38 on the Chuckwalla Valley and Palo Verde Mesa groundwater basin would be large if several 39 projects were built using wet-cooling trough or tower technologies. Water use is sustainable only 40 if development in the proposed SEZ emphasizes deployment of PV and dish engine facilities and if deployment of trough and tower facilities is limited to the eastern portion of the proposed SEZ. 41 42

43 The development of the six advanced solar proposals identified within the geographic extent of effects (Section 9.4.22.2.1) could draw up to 8,000 ac-ft (9.9 million m³/yr) of water to 44 support construction during the period 2011–2013, and up to 2,700 ac-ft/yr (3.3 million m³/yr) 45 during the following operational period of approximately 30 years. Four of these projects, the 46

1 four fast-track solar applications, are located within the proposed Riverside East SEZ and would 2 draw from the Chuckwalla Valley and Palo Verde Mesa groundwater basin. In addition, the 3 Eagle Crest pumped storage project would withdraw an initial 25,000 ac-ft (30.8 million m³) 4 from the Chuckwalla Valley basin and require makeup water of 2,400 ac-ft/yr (3.0 million 5 m^{3}/yr) over its operating life. Some of the makeup water represents water lost to seepage back 6 into the basin. The Rice Solar Energy Project, with construction water use of 780 ac-ft/vr 7 $(0.96 \text{ million } \text{m}^3/\text{yr})$ and operational water use of 180 ac-ft/yr (0.22 million $\text{m}^3/\text{yr})$, likely would 8 not affect groundwater at the Riverside East SEZ, because the SEZ does not lie over the Rice 9 Valley basin, which is separated from the Palo Verde Mesa basin by the Big Maria Mountains to 10 the north (Section 9.4.9.1.2). Likewise, the several pending solar energy project proposals for locations off-site within 50 mi (80 km) of the SEZ, including those to the north in the Iron 11 12 Mountain SEZ (Figure 9.4.22.2-1), if approved, would likely draw from other groundwater 13 basins and thus not contribute significantly to cumulative impacts within the Riverside East SEZ. 14 Therefore, cumulative impacts on groundwater basins underlying the Riverside East SEZ from currently foreseeable projects would be minimally greater than the impacts from solar energy 15 16 development within the SEZ. Similarly, potential effects on surface waters and wetlands from drawdown of groundwater underlying the Riverside East SEZ would likely not extent to 17 18 locations of other potential off-site solar projects. 19 20 The small quantities of sanitary wastewater that would be generated during the 21 construction and operation of utility-scale solar energy facilities within the Riverside East SEZ in 22 combination with similarly small volumes from other foreseeable projects would not be expected 23 to strain available sanitary wastewater treatment facilities in the general area of the SEZ. 24 Blowdown water from cooling towers for wet-cooled technologies would be treated within a 25

- project site (e.g., in settling ponds) and injected into the ground, released to surface water bodies,
 or reused, and thus would not contribute cumulative impacts to any nearby treatment systems.
- 28 29

30

9.4.22.4.9 Vegetation

31 The proposed SEZ is in a transitional area that includes many species associated with the 32 Mojave and Sonoran Deserts within the Sonoran Basin and Range ecoregion, which supports 33 creosotebush (Larrea tridentata)-bur sage (Ambrosia dumosa) plant communities with large 34 areas of palo verde (Cercidium microphyllum)-cactus shrub and saguaro cactus (Carnegiea 35 gigantea) communities. The western portion of the SEZ is within the Mojave Basin and Range 36 ecoregion, which is characterized by broad basins and scattered mountains. Thirty-seven 37 wetlands are located entirely or in part within the SEZ, with a total of 3,807 acres (15.4 km²), 38 while 113 wetlands are located within the indirect impact area within 5 mi (8 km) of the SEZ. 39 Most wetlands are of the intermittent or ephemeral type. 40

Desert dry washes in the SEZ support woodlands that include ironwood, smoketree, and blue palo verde. An ironwood forest, identified by BLM as a Unique Plant Assemblage, occurs in the upper reaches of McCoy Wash. If utility-scale solar energy projects were to be constructed within the SEZ, all vegetation within the footprints of the facilities would likely be removed during clearing and grading of land. Vegetation communities primarily affected would be the Sonora-Mojave Creosotebush-White Bursage Desert Scrub cover type. Solar development could
1 result in large impacts on North American Warm Desert Active and Stabilized Dune; moderate 2 impacts on Sonora-Mojave Creosotebush-White Bursage Desert Scrub, North American Warm 3 Desert Volcanic Rockland, North American Warm Desert Wash, North American Warm Desert 4 Pavement, North American Warm Desert Playa, Sonora-Mojave Mixed Salt Desert Scrub, 5 Developed, Open Space-Low Intensity, and North American Warm Desert Riparian Mesquite 6 Bosque; and small impacts on the remaining cover types. Sand dune, playa, mixed salt desert 7 scrub (primarily associated with Ford Dry Lake), and dry wash communities are important 8 sensitive habitats in the region. 9 10 Numerous other renewable energy projects are proposed within a 50-mi (80-km) radius of the Riverside East SEZ. As many as 33 solar projects and 9 wind projects have pending 11 12 applications within this distance, with ROW applications for solar applications alone totaling 13 more than 400,000 acres (1,600 km²), including more than 30,000 acres (120 km²) for five of six advanced solar proposals on private and public land (Section 9.4.22.2.1). Depending on the 14 15 actual development of renewable energy projects within and outside the SEZ and accompanying 16 transmission lines, roads, and other infrastructure within the geographic extent of effects, 17 cumulative impacts on certain cover types could be significant, particularly those that favor the 18 basin flats, which are suitable for solar facilities. As other projects and transmission lines are

added, natural corridors and safe germination sites may be lost; this would be detrimental toplant populations and ecosystem stability in the region.

21

In addition, the cumulative effects of fugitive dust generated during the construction of solar facilities along with other activities in the area, such as transportation and recreation, could increase the dust loading in habitats outside a solar project area. Increased dust loading could result in reduced productivity or changes in plant community composition. Programmatic design features would be implemented to reduce the impacts from solar energy projects and thus reduce the overall cumulative impacts on plant communities and habitats.

28 29

30

31

9.4.22.4.10 Wildlife and Aquatic Biota

32 As many as 173 species of amphibians (2 species), reptiles (31 species), birds 33 (100 species), and mammals (40 species) occur in and around the proposed Riverside East SEZ 34 (Section 9.4.11). The construction of utility-scale solar energy projects in the SEZ and of any 35 associated transmission lines and roads in or near the SEZ would have impacts on wildlife 36 through habitat disturbance (i.e., habitat reduction, fragmentation, and alteration), wildlife 37 disturbance, loss of connectivity between natural areas (e.g., habitat fragmentation and blockage 38 of dispersal corridors for bighorn sheep and desert tortoise), and wildlife injury or mortality. In 39 general, affected species with broad distributions and occurring in a variety of habitats would be 40 less affected than species with a narrowly defined habitat within a restricted area. Programmatic design features include pre-disturbance biological surveys to identify key habitat areas used by 41 42 wildlife, followed by avoidance or minimization of disturbance to those habitats (e.g., Ford Dry 43 Lake and Palen Lake). 44

45 Up to 33 other solar projects and 9 wind projects have pending applications within 50 mi 46 (80 km) of the SEZ, while the proposed Iron Mountain SEZ about 25 mi (40 km) to the north.

1 ROW applications for solar projects alone total more than 400,000 acres $(1,600 \text{ km}^2)$, including 2 over 30,000 acres (120 km²) for five of six advanced solar proposals on private and public land 3 (Section 9.4.22.2.1). Depending on the actual development of renewable energy projects within 4 and outside the SEZ and of accompanying transmission lines, roads, and other infrastructure 5 within the geographic extent of effects, cumulative impacts on some wildlife species could be 6 significant, particularly those species with habitats or migratory routes in the basin flats, which 7 are suitable for solar facilities.

8

9 While many of the wildlife species have extensive habitat available within the affected 10 counties, in cases where projects are closely spaced, the cumulative impact on a particular species could be moderate to large. Programmatic design features would be implemented to 11 12 reduce the impacts from solar energy projects and thus reduce the overall cumulative impacts on 13 wildlife. However, even with mitigations in place, cumulative impacts could be moderate within the geographic extent of effects. 14

15

16 No perennial or intermittent streams occur within the proposed Riverside East SEZ, but numerous dry washes are inundated after rain events; both Palen Lake and Ford Dry Lake are 17 18 intermittent and rarely have standing water. Temporary ponding may occur in Palen Lake. 19 Similarly, wetlands within the SEZ are intermittently flooded, so surface water is usually absent 20 but may be present for variable periods. Consequently, no aquatic habitat or communities are 21 likely to be present for an extended time within the SEZ. The intermittent wetlands and dry lakes 22 present within and around the SEZ could be affected by runoff of water and sediment from the 23 SEZ, especially if ground disturbance occurred near Palen Lake. However, with programmatic 24 design features in place, the potential for indirect impacts on aquatic habitats and organisms 25 within the region is small. Within the geographic extent of effects (50-mi [80 km] radius), water taken from perennial surface water features could affect water levels and, as a consequence, 26 27 aquatic organisms in those water bodies. Thus, there would be small cumulative impacts on 28 aquatic biota and habitats resulting from solar development in the region. Similarly, increased 29 future demand on groundwater for multiple uses, including solar power development within the 30 SEZ, could affect surface water levels outside of the SEZ and, as a consequence, could affect 31 aquatic organisms in those water bodies.

- 32
- 33
- 34

35

36

9.4.22.4.11 Special Status Species (Threatened, Endangered, Sensitive, and Rare Species)

37 Thirty special status species are known to occur within the affected area of the Riverside 38 East SEZ. Of these species, the Coachella Valley milkvetch is listed as endangered, and the 39 desert tortoise is listed as threatened under the ESA; nine are listed as BLM-designated sensitive; 40 and the remaining 19 species are considered rare. Numerous additional species occurring on or in the vicinity of the SEZ are listed as threatened or endangered by the states of California or 41 42 Arizona or are listed as a sensitive species by the BLM. Potential mitigation measures that could 43 be used to reduce or eliminate the potential for cumulative effects on these species from the 44 construction and operation of utility-scale solar energy projects within the geographic extent of 45 effects include avoidance of habitat, translocation of individuals, and minimization of erosion, 46 sedimentation, and dust deposition. 47

1 Numerous reasonably foreseeable future actions could occur within the geographic extent 2 of effects of the proposed Riverside East SEZ, including 33 solar and 9 wind applications for 3 projects that would cover up to 400,000 acres (1,600 km²). A number of sensitive species have 4 been identified within the boundaries of the six advanced solar proposals covering 30,000 acres 5 (120 km²), including the four fast-track solar energy proposals within the proposed Riverside 6 East SEZ (Section 9.4.22.2.1). These species include the federally or state-listed desert tortoise, 7 Mojave fringe-toed lizard, Colorado fringe-toed lizard, Western burrowing owl, short-eared owl, 8 prairie falcon, northern harrier, loggerhead shrike, California horned lark, desert kit fox, and 9 several California-listed sensitive plant species.

10

In addition, the proposed Iron Mountain SEZ is about 25 mi (40 km) north of the Riverside East SEZ. Many special status species with potential habitat impacts from solar development are common to both the Riverside East and Iron Mountain SEZs, including the desert tortoise and Mojave fringe-toed lizard. However, projects in these and other areas would employ design features to reduce or eliminate the impacts on protected species as required by the ESA and other applicable federal and state laws and regulations.

17

Depending on the number and size of other projects that will actually be built within the next 20 to 30 years within the geographic extent of effects, there could be cumulative impacts on protected species due to habitat destruction and overall development and fragmentation of the area. Habitats that are particularly at risk are those in basin flats, which are suited for solar development. Together, several new solar facilities and the other associated actions would have a cumulative impact on wildlife. Where projects are closely spaced, the cumulative impact on a particular species could be moderate to large.

- 25 26
- 27

9.4.22.4.12 Air Quality and Climate

28 29 While solar energy generates minimal emissions compared with fossil fuel-generated 30 energy, the site preparation and construction activities associated with solar energy facilities 31 would produce some emissions, mainly particulate matter (fugitive dust) and emissions from 32 vehicles and construction equipment. When these emissions are combined with those from other 33 projects near solar energy facilities or when they are added to natural dust generated by winds 34 and windstorms, the air quality in the general vicinity of the projects could be temporarily 35 degraded. For example, particulate matter (dust) concentration at or near the SEZ boundaries 36 could at times exceed state or federal ambient air quality standards. Generation of dust from 37 construction activities can be partially controlled by implementing aggressive dust control 38 measures, such as increased watering frequency or road paving or treatment, and/or sound 39 practices such as minimizing activities under unfavorable meteorological conditions. 40

Several other renewable energy projects are proposed or planned within the air basin shared by Riverside East (Section 9.4.22.2.1 and Figure 9.4.22.2-1), while the proposed Iron Mountain SEZ is about 25 mi (40 km) north. Concurrent construction of solar facilities at the two SEZs could have cumulative impacts. Four fast-track proposed projects lie in the Riverside East SEZ, while a total of 33 solar and 9 wind proposals are pending within 50 mi (80 km) of the Riverside East SEZ. The fast-track projects have overlapping construction schedules for the period 2011 to 2013. These projects in combination with others with pending applications could
 produce periods of elevated particulate emissions in the affected area.

3

4 Over the long term and across the region, the development of solar energy may have 5 beneficial cumulative impacts on the air quality and atmospheric values in southern California by 6 offsetting the need for energy production with fossil fuels, which results in higher levels of 7 emissions. As discussed in Section 9.4.13, air emissions from operating solar energy facilities are 8 relatively minor, while the displacement of criteria air pollutants, VOCs, TAPs, and GHG 9 emissions currently produced from fossil fuels could be relative large. For example, if the 10 Riverside East SEZ is fully developed (80% of its acreage) with solar facilities, the quantity of pollutants avoided could be as large as 54% of all emissions from the current electric power 11 12 systems in California (Section 9.4.13.2.2).

- 13
- 14 15

9.4.22.4.13 Visual Resources

16 17 The proposed Riverside East SEZ is within the Mojave basin and range physiographic 18 province, typified by small, rocky mountain ranges with jagged peaks alternating with talus 19 slopes and desert floor. The proposed SEZ site is in the flat plains of the Chuckwalla (including 20 the McCoy Wash area east of the McCoy Mountains) and Palen Valley floors, with the strong 21 horizon line and several mountain ranges surrounding the valley being the dominant visual 22 features. The VRI values for the SEZ and immediate surroundings are VRI Class II, indicating 23 high relative visual values; Class III, indicating moderate relative visual values; and Class IV, 24 indicating low relative visual values. The inventory indicates moderate scenic quality for the 25 Chuckwalla Valley and high sensitivity for the SEZ lands near Joshua Tree NP and for the Class 26 II area in the southeastern portion of the SEZ, based on heavy recreational use, the presence of a 27 BLM scenic highway and historic trails, and proximity to congressionally designated wilderness 28 and areas of critical environmental concern.

29

30 Development of utility-scale solar energy projects within the SEZ would contribute to 31 the cumulative visual impacts in the general vicinity of the SEZ and in the Chuckwalla and 32 Palen valleys. However, the exact nature of the visual impacts and the design features that would be appropriate would depend on the specific project locations within the SEZ and on the 33 34 solar technologies used. Such impacts and potential design features would be considered in 35 visual analyses conducted for specific future projects. In general, large visual impacts on the 36 SEZ would be expected to occur as a result of the construction, operation, and decommissioning 37 of utility-scale solar energy projects. These impacts would be expected to involve major 38 modification of the existing character of the landscape and would likely dominate the views 39 for some nearby observers. Additional impacts would occur as a result of the construction, 40 operation, and decommissioning of related facilities, such as access roads and electric 41 transmission lines.

42

Because of the large size of utility-scale solar energy facilities, the large number of
 pending applications on public lands in the area, and the generally flat, open nature of the
 proposed SEZ, some lands outside the SEZ would also be subjected to visual impacts related to
 the construction, operation, and decommissioning of utility-scale solar energy development.

1 Potential impacts would include night sky pollution, including increased skyglow, light spillage, 2 and glare. Some of the affected lands outside the SEZ would include potentially sensitive scenic 3 resource areas, including large portions of the mountain ranges surrounding the Chuckwalla 4 Valley and some neighboring valleys, including Ward and Rice Valleys, and the Pinto Basin, 5 which could be subject to visual impacts associated with solar energy development within the 6 SEZ. The magnitude of visual impacts on these sensitive areas would range from minimal to 7 major. Visual impacts resulting from solar energy development within the SEZ would be in 8 addition to visual impacts caused by other potential projects in the area, such as other solar 9 facilities on private lands, transmission lines, and other renewable energy facilities, including 10 windmills. The presence of new facilities would normally be accompanied by increased numbers of workers in the area, traffic on local roadways, and support facilities, all of which would add to 11 12 cumulative visual impacts. 13

14 As many as 33 other solar projects and 9 wind projects have pending applications on 15 public lands within 50 mi (80 km) of the proposed Riverside East SEZ, including 15 solar applications within the SEZ. In addition, the proposed Iron Mountain SEZ is about 25 mi 16 17 (40 km) north of the Riverside East SEZ. While the overall extent of cumulative effects of 18 renewable energy development in the area would depend on the number of projects actually 19 built, it may be concluded that these projects could transform the general visual character of the 20 landscape from primarily rural desert to more commercial-industrial. Because of the topography 21 of the region, solar facilities, located in flat basins, would be visible at great distances from 22 sensitive viewing locations in the surrounding mountains. Also, the facilities would be located 23 near major roads, thus the facilities would be viewable by motorists. However, some portions of 24 major roads where solar energy facilities would be located, including I-10, are currently visually 25 affected by transmission line corridors, towns, and other infrastructure, as well as the road 26 system itself.

27

In addition to cumulative visual impacts associated with views of particular future facilities, as additional facilities are added, several projects might become visible from one location or in succession as viewers move through the landscape, such as driving on local roads. In general, the new facilities would vary in appearance, and depending on the number and type of facilities, the resulting visual disharmony could exceed the visual absorption capability of the landscape and add significantly to the cumulative visual impact. Thus, the overall cumulative visual impacts in the region from solar and wind energy development would be significant.

36

37 38

9.4.22.4.14 Acoustic Environment

The areas around the proposed Riverside East SEZ and in Riverside County in general are relatively quiet. Existing noise sources include road traffic, railroad traffic, aircraft flyovers, agricultural activities, and activities and events at nearby residences. A number of residences are scattered along the SEZ boundaries, while population centers with schools include Desert Center, located at the southwestern edge of the SEZ, and Blythe, located about 5 mi (8 km) east of the eastern SEZ boundary. During construction of solar energy facilities, construction equipment could increase the noise levels over short periods during the day. After the facilities are

46 constructed and begin operating, there would be little or minor noise impacts from any of the

technologies, except for solar dish engine facilities and parabolic trough or power tower facilities using TES. It is possible that residents could be cumulatively affected by more than one solar or other development built in or near the SEZ, particularly at night when the noise is more discernable due to relatively low background levels. However, such cumulative impacts are unlikely due the expected wide separation of facilities and the sparse population of the region.

9.4.22.4.15 Paleontological Resources

10 The potential for impacts on significant paleontological resources at the Riverside East 11 SEZ as a whole is relatively unknown, but the potential is high in some areas. Further, the 12 specific sites selected for future projects would be surveyed if determined necessary by the 13 BLM, and any paleontological resources encountered would be avoided or mitigated to the 14 extent possible. A similar process would be employed at other facilities constructed in the area, 15 and no significant cumulative impacts on paleontological resources are expected.

16

8

9

17 18 19

9.4.22.4.16 Cultural Resources

20 The proposed Riverside East SEZ is located in a transitional area between the Colorado 21 Desert to the south and the Mojave Desert to the north. The area of the SEZ was important as a 22 source of seasonal resources to surrounding Native American groups and includes important 23 trails that connect them. Some trails have spiritual significance, while the surrounding mountains 24 are regarded as sacred, with some peaks having special status. Other culturally important features 25 include caves, rock formations, and springs. Revered locations included panels of rock art, 26 ancestral settlements, arranged-rock sites, and burial or cremation areas. Direct impacts on 27 significant cultural resources during site preparation and construction activities could occur in 28 the proposed Riverside East SEZ. However, further investigation would be needed, including a 29 cultural resource survey of the entire area of potential effects to identify archaeological sites, 30 historic structures and features, and traditional cultural properties in project areas. Numerous 31 cultural surveys have been conducted in the vicinity of the SEZ, including surveys at project sites 32 within the SEZ with fast-track applications (Section 9.4.22.2.1) and have identified a number of 33 prehistoric and historic sites at the project locations. It is possible that the development of utility-34 scale solar energy projects in the proposed Riverside East SEZ and of other projects likely to 35 occur in the area could contribute cumulatively to cultural resource impacts, in particular along the I-10 corridor. However, historic properties would be avoided or mitigated to the extent 36 37 possible, in accordance with state and federal regulations. Similarly, through ongoing 38 consultation with the California SHPO and appropriate Native American governments, it is 39 likely that many adverse effects on significant resources within the geographic extent of effects 40 could be mitigated to some extent. Some visual and landscape scale impacts may not be 41 mitigable to the satisfaction of all interested parties. The increment of adverse effects from solar 42 energy development on the overall cumulative effect on cultural resources would depend on the 43 nature of the resources affected and could be significant. 44

- 45
- 46

1 2

9.4.22.4.17 Native American Concerns

3 All federally recognized Tribes with traditional ties to the area of the proposed Riverside 4 East SEZ have been contacted so that they could identify their concerns regarding solar energy 5 development. The concerns of Native Americans, including the Serrano, Cahuilla, Quechan, 6 Mohave, and Chemehuevi, over other energy development projects in the region have been 7 documented. The Chemehuevi and NALC have expressed concerns over the Salt Song Trail, and 8 the Quechan Indian Tribe of the Fort Yuma Reservation stressed the importance of evaluating 9 impacts on landscapes as a whole within their Tribal Traditional Use Area. Solar development 10 within the SEZ could have adverse effects on these and other Native American concerns even 11 after mitigations are applied. It is further possible that the development of utility-scale solar 12 energy projects in the SEZ, when added to other potential projects likely to occur in the area, 13 including renewable energy projects outside the SEZ, could contribute cumulatively to visual 14 impacts on their traditional landscape and the destruction of other resources in the valley important to Native Americans. Continued discussions with the area Tribes through government-15 16 to-government consultation is necessary to effectively consider and address the Tribes' concerns 17 related to solar energy development in the region.

18 19

20

21

9.4.22.4.18 Socioeconomics

22 Solar energy development projects in the proposed Riverside East SEZ could 23 cumulatively contribute to socioeconomic effects in the immediate vicinity of the SEZ and in the 24 surrounding multicounty ROI. The effects could be positive (e.g., creation of jobs and generation 25 of extra income, increased revenues to local governmental organizations through additional taxes 26 paid by the developers and workers) or negative (e.g., added strain on social institutions such as 27 schools, law enforcement agencies, and health care facilities). Impacts from solar development 28 would be most intense during facility construction, but of greatest duration during operations. 29 Construction in the Riverside East SEZ and at other new projects in the area, including other 30 renewable energy projects, would temporarily increase the number of workers in the area 31 needing housing and services. The number of workers involved in the construction of solar 32 projects in the proposed Riverside East SEZ alone could range from about 400 to 5,200 in the 33 peak construction year, depending on the solar technology being developed, with solar PV 34 facilities at the low end and solar trough facilities at the high end. The total number of jobs 35 created in the area could range from approximately 1,200 (solar PV) to as high as 16,000 (solar 36 trough).

37

38 Cumulative socioeconomic effects in the ROI from construction of solar facilities would 39 occur to the extent that multiple construction projects of any type were ongoing simultaneously. 40 It is a reasonable expectation that this condition would occur within a 50-mi (80 km) radius of the SEZ occasionally over the 20-year or more solar development period. Six anticipated projects 41 42 with advanced proposals, including four fast-track projects located within the Riverside East 43 SEZ, would employ up to 2,300 construction workers during the period 2011 to 2013 44 (Section 9.4.22.2.1). This number of workers could place a modest short-term strain on local 45 resources in this sparsely populated area.

46

1 Annual impacts during the operation of solar facilities would be less, but could last 20 to 2 30 years, and could combine with those from other new projects in the area. The number of 3 workers needed at the solar facilities within the SEZ would range from 350 to 7,100, with 4 approximately 500 to 11,700 total jobs created in the region. In addition, approximately 5 460 operation workers are estimated for the five of six projects with advanced proposals in the 6 area (Section 9.4.22.2.1). Population increases resulting from renewable energy development 7 within 50 mi (80 km) of the Riverside East SEZ would contribute to general population growth 8 experienced in the region in recent years. The overall socioeconomic impacts would be positive, 9 through the creation of additional jobs and income. The negative impacts, including some short-10 term disruption of rural community quality of life, would not be considered large enough to require specific design features. 11

12 13

14

15

9.4.22.4.19 Environmental Justice

16 Environmental impacts associated with solar facilities within the proposed Riverside East 17 SEZ potentially affecting minority and low-income populations include noise and dust during the 18 construction of solar facilities; noise associated with solar project operations; the visual impacts 19 of solar facilities and transmission lines; access to land used for economic, cultural, or religious 20 purposes; and effects on property values. However, such effects from solar development within 21 the proposed Riverside East SEZ would be small and would not be expected to contribute to 22 cumulative impacts on minority and low-income populations with the 50-mi (80-km) geographic 23 extent of effects.

24 25

26

27

9.4.22.4.20 Transportation

During construction activities, up to 1,000 workers could be commuting to a single construction site at the SEZ, which would be less than 10% of the current traffic on I-10 near the SEZ. Should up to three large projects with approximately 1,000 daily workers each be under development simultaneously, an additional 6,000 vehicle trips per day could be added to I-10, an approximate 30% increase, which could have small to moderate impacts on traffic flow during peak commute times.

34

35 Further, if construction occurred concurrently in the proposed Riverside East and Iron Mountain SEZs, which are about 25 mi (40 km) apart and both served by State Route 177/62, 36 37 the increase in traffic during shift changes could be significant. Local road improvements may 38 be necessary near site access points. Any impacts during construction activities would be 39 temporary. The impacts could be mitigated to some degree by having different work hours 40 within an SEZ or between the two SEZs. Traffic increases during operation would be reduced because of the lower number of workers needed to operate solar facilities and would have a 41 42 smaller contribution to cumulative impacts.

- 43
- 44

9.4.23 References

Note to Reader: This list of references identifies Web pages and associated URLs where
reference data were obtained for the analyses presented in this PEIS. It is likely that at the time
of publication of this PEIS, some of these Web pages may no longer be available or their URL
addresses may have changed. The original information has been retained and is available through
the Public Information Docket for this PEIS.
AECOM (Architectural Engineering, Consulting, Operations and Maintenance) Environment,

- 10 2009a, *Palen Solar Power Project Application for Certification, Volume I*, prepared for the 11 California Energy Commission, submitted by Solar Millennium and Chevron Energy Solutions.
- 11 12

1

- AECOM Environment, 2009b, *Blythe Solar Power Project Application for Certification, Volume I*, prepared for the California Energy Commission, submitted by Solar Millennium and Chevron.
 - AECOM Environment
- 16 AECOM Environment, 2009c, *Project Design Refinements*. Available at http://energy.ca.gov/
- 17 sitingcases/beacon/documents/applicant/refinements/002_WEST1011185v2_Project_Design_
- 18 Refinements.pdf. Accessed Sept. 2009.
- 19
- 20 African American Environmentalist Association, 2009, Governor Schwarzenegger Vetoes
- *AB 1404*. Available at http://aaenvironment.blogspot.com/2009/10/governor-schwarzenegger vetoes-ab-1404.html. Accessed Nov. 16, 2009.
- 23
- AMA (American Medical Association), 2009, *Physician Characteristics and Distribution in the* U.S., Chicago, Ill. Available at http://www.ama-assn.org/ama/pub/category/2676.html.
- 26
- 27 Bagwell, E.A., and G.E. Kline, 2010, "Cultural Resources and Native American Values,"
- 28 Section C.3 in Genesis Solar Power Project, Staff Assessment and Draft Environmental Impact
- Statement, Staff Report, U.S. Bureau of Land Management and California Energy Commission,
 March.
- 31
- 32 Bassett, A.M., and D.H. Kupfer, 1964, *A Geologic Reconnaissance in the Southeastern Mojave*
- 33 Desert, California, Special Report 83, California Division of Mines and Geology.
- 34
- 35 Beacon Solar, LLC, 2008, *Application for Certification for the Beacon Solar Energy Project*,
- 36 submitted to the California Energy Commission, March. Available at http://www.energy.ca.gov/
- 37 sitingcases/beacon/index.html.
- 38 Bean, L.J., and C.R. Smith, 1978, "Serrano," pp. 570–575 in Handbook of North American
- 39 Indians, Vol. 8, California, R.F. Heizer (editor), Smithsonian Institution, Washington, D.C.
- 40
- 41 Bean, L.J., et al., 1978, *Persistence and Power: A Study of Native American Peoples in the*
- 42 Sonoran Desert and the Devers-Palo Verde High Voltage Transmission Line, prepared for the
- 43 Southern California Edison Company by Cultural Systems Research, Incorporated, Menlo Park,
- 44 Calif.
- 45

1 2	Bee, R. L., 1983, "Quechan," pp. 86–97 in <i>Handbook of North American Indians, Vol. 10, Southwest,</i> Alfonso Ortiz (editors), Smithsonian Institution, Washington, D.C.
3	
4 5	Beranek, L.L., 1988, <i>Noise and Vibration Control</i> , rev. ed., Institute of Noise Control Engineering, Washington, D.C.
6	
7 8	Bischoff, M.C., 2000, <i>The Desert Training Center/California–Arizona Maneuver Area</i> , 1942–1944: Historic and Archaeological Contexts, Technical Series 75, Statistical Research,
9 10	Inc., Tucson, Ariz., prepared for the Bureau of Land Management, California Desert District.
11	BLM (Bureau of Land Management), 1980, Green River—Hams Fork Draft Environmental
12	Impact Statement: Coal Denver Colo
13	
14	BLM 1983 Final Supplemental Environmental Impact Statement for the Prototype Oil Shale
15 16	Leasing Program, Colorado State Office, Denver, Colo., Jan.
17	BLM 1984 Iron Mountain Divisional Camp Resource Management Plan CA-06-ACEC-52
18	Department of the Interior California Desert District Needles Resource Area Needles Calif
19	Department of the interior, Camorina Desert District, receales, resource mea, recules, Cam.
20	BLM 1986a Visual Resource Inventory BLM Manual Handbook 8410-1 Release 8-28
20	U.S. Department of the Interior Jan
$\frac{21}{22}$	0.5. Department of the Interior, Jan.
22	RIM 1086h Visual Resource Contrast Rating RIM Manual Handbook 8/21 1 Release 8 20
23	U.S. Department of the Interior Jan
24 25	0.5. Department of the Interior, Jan.
25 26	RIM 1000 California Statewide Wilderness Study Report Part 4 Vol 6 California State
20	Office Secremente Calif
21	Onice, Saciamento, Cam.
20	DIM 1006 White Diver Descurses Area Dropoged Descurses Management Dlan and Final
29	BLM, 1990, While River Resource Area Proposed Resource Management Plan and Pinal
3U 21	Environmeniai Impaci Siaiemeni, Colorado Stale Office, while River Resource Area, Craig
31	District, Colo., June.
32	
33	BLM, 1999, The California Desert Conservation Area Plan, 1980 as Amended, California Desert
34	District Office, Riverside, Calif., Aug. 17, March.
35	
36	BLM, 2001, California Water Rights Fact Sheet, Available at http://www.blm.gov/nstc/
37	WaterLaws/california.html.
38	
39	BLM, 2002a, Record of Decision for Approved Northern & Eastern Colorado Desert
40	Coordinated Management Plan, an Amendment to the California Desert Conservation Plan
41	1980, California Desert District Office, Dec. 19. Available at http://www.blm.gov/ca/news/
42	pdfs/neco2002/neco_rod_final.pdf. Accessed May 5, 2010.
43	
44	

1 2 3 4 5	BLM, 2002b, Proposed Northern and Eastern Colorado Desert Coordinated Management Plan, an Amendment to the California Desert Conservation Area Plan 1980 and Sikes Act Plan with the California Department of Fish and Game, and Final Environmental Impact Statement, U.S. Department of Interior Bureau of Land Management California Desert District and California Department of Fish and Game Inland, Deserts, and Eastern Sierra Region.
6 7 8 9	BLM, 2007a, Environmental Assessment Issuance of 10-Year Grazing Lease for the Rice Valley Allotment CA-660-EA06-55, BLM Palm Springs South Coast Field Office, Jan. 2007.
10 11 12	BLM, 2007b, Potential Fossil Yield Classification (PFYC) System for Paleontological Resources on Public Lands, Instruction Memorandum No. 2008-009, with attachments, Washington, D.C., Oct. 15.
13 14 15 16	BLM, 2008a, Assessment and Mitigation of Potential Impacts to Paleontological Resources, Instruction Memorandum No. 2009-011, with attachments, Washington, D.C., Oct. 10.
17 18 19 20	BLM, 2008b, <i>Geothermal Resources Leasing Programmatic EIS</i> . Available at http://www.blm.gov/wo/st/en/prog/energy/geothermal/geothermal_nationwide/Documents/Final_PEIS.html. Accessed Jan. 11, 2010.
20 21 22 23	BLM, 2008c, <i>Special Status Species Management</i> , BLM Manual 6840, Release 6-125, U.S. Department of the Interior, Dec. 12.
24 25 26 27	BLM, 2009a, <i>Herd Management Areas California</i> , Washington, D.C. Available at http://www.blm.gov/pgdata/etc/medialib/blm/wo/ Planning_and_Renewable_Resources/wild_horses_and_burros/statistics_and_maps/new_hma_state_maps.Par.22729.File.dat/HMA_California.pdf. Accessed Oct. 20, 2009.
28 29 30 31 32	BLM, 2009b, <i>HA and HMA Data through Fiscal Years 2005–2009</i> , Washington, D.C. Available at http://www.blm.gov/wo/st/en/prog/wild_horse_ and_burro/wh_b_information_center/statistics_and_maps/ha_and_hma_data.html. Accessed Oct. 19, 2009.
33 34 35 36	BLM, 2009c, <i>Rangeland Administration System</i> . Available at http://www.blm.gov/ras/ index.htm. Last updated Aug. 24, 2009. Accessed March 16, 2010.
37 38 39	BLM, 2010a, <i>Palen/McCoy Wilderness Area</i> , BLM California Web site. Available at http://www.blm.gov/ca/pa/wilderness/wa/areas/palen-mccoy.html. Accessed Feb. 22, 2010.
40 41 42	BLM, 2010b, <i>Rice Valley Wilderness Area</i> , BLM California Web site. Available at http://www.blm.gov/ca/pa/wilderness/wa/areas/rice_valley.html. Accessed Feb. 22, 2010.
43 44 45	BLM, 2010c, <i>Fast-Track Renewable Energy Projects</i> , BLM California Desert District Web site. Available at http://www.blm.gov/ca/st/en/fo/cdd/alternative_energy/fast-trackfastfacts.html. Accessed Feb. 10, 2010.

- 1 BLM, 2010d, Chuckwalla Mountains Wilderness Area, BLM California Web site. Available at 2 http://www.blm.gov/ca/pa/wilderness/wa/areas/chuckwalla mountains.html. Accessed 3 Feb. 22, 2010. 4 5 BLM, 2010e, Visual Resource Inventory, prepared for U.S. Department of Interior Bureau of 6 land Management, Needles Field Office, Needles, Calif., Sept. 7 8 BLM, 2010f, Solar Energy Projects, BLM California Desert District Web site. Available at 9 http://www.blm.gov/ca/st/en/fo/cdd/alternative energy/SolarEnergy.html. Accessed 10 Feb. 17, 2010. 11 12 BLM, 2010g, Draft Environmental Impact Statement and Draft Plan Amendment to the 13 California Desert Conservation Area Plan for the Proposed Desert Sunlight Solar Farm Project. 14 Available at http://www.blm.gov/ca/st/en/fo/palmsprings/Solar Projects/Desert Sunlight.html 15 16 BLM, 2010h, "Wind Applications & Authorizations," BLM California Desert District Web site. 17 Available at http://www.blm.gov/ca/st/en/prog/energy/wind.html. Accessed Nov. 5, 2010. 18 19 BLM, 2010i, Solar Energy Interim Rental Policy, U.S. Department of the Interior. Available at 20 http://www.blm.gov/wo/st/en/info/regulations/Instruction Memos and Bulletins/national 21 instruction/2010/IM 2010-141.html. 22 23 BLM and CA SHPO (The California State Historic Preservation Officer), 2010 a, Programmatic 24 Agreement among the Bureau of Land Management - California, the California Energy 25 Commission, Palen Solar 1, LLC, and the California State Historic Preservation Officer, 26 *Regarding the Blythe Solar Power Project – Riverside County, California, Oct.* 27 28 BLM and CA SHPO, 2010b, Programmatic Agreement among the Bureau of Land Management 29 - California, the California Energy Commission, Genesis Solar, LLC, and the California State 30 Historic Preservation Officer, Regarding the Genesis Solar Power Project—Riverside County, 31 California, Oct. 32 33 BLM and CASHPO, 2010c, Programmatic Agreement among the Bureau of Land 34 Management—California, the California Energy Commission, Palen Solar I, LLC, and the 35 California State Historic Preservation Officer, Regarding the Palen Solar Power Project— 36 Riverside County, California, Oct. 37 38 BLM and CDFG (California Department of Fish and Game), 2002, Proposed Northern & 39 Eastern Colorado Desert Coordinated Management Plan and Final Environmental Impact 40 Statement, Bureau of Land Management, California Desert District Office, Moreno Valley, 41 California, and California Department of Fish and Game, Inland, Desert and Eastern Sierra 42 Region, Ontario, California, July. Available at http://www.blm.gov/ca/news/pdfs/neco2002. 43 Accessed April 6, 2010. 44
- 45

1 2 3 4	BLM and CEC (California Energy Commission), 2010a, <i>Staff Assessment and Environmental Impact Statement, Blythe Solar Power Project Application for Certification (09-AF-6).</i> Available at http://weww.energy.ca.gov/sitingcases/solar_millennium?bluythe/index.html. Accessed April 11, 2010.
5 6 7 8 9	BLM and CEC, 2010b, <i>Staff Assessment and Environmental Impact Statement, Palen Solar Power Project Application for Certification (09-AFC-7)</i> . Available at http://www.energy.ca.gov/sitingcases/solar_millennium_palen/index.html. Accessed April 11, 2010.
10 11 12 13 14	BLM and CEC, 2010c, Staff Assessment and Environmental Impact Statement, Genesis Solar Power Project Application for Certification (09-ARF-8). Available at http://www.energy.ca.gov/sitingcases/solar_millennium.genesis_solar/documents/. Accessed April 11, 2010.
15 16 17 18	BLM and USFS, 2010a, <i>Geocommunicator—Land Survey Information System</i> . Available at http://www.geocommunicator.gov/GeoComm/lsis_home/home/default.shtm. Accessed April 29, 2010.
19 20 21	BLM and USFS, 2010b, <i>Geocommunicator—Energy Map</i> . Available at http://www.geocommunicator.gov/GeoComm/index.shtm. Accessed Nov. 3, 2010.
22 23 24	BLM and USFS, 2009c, <i>Geocommunicator—NILS National Integrated Land System</i> . Available at http://www.geocommunicator.gov/GeoComm/index.shtm.
25 26 27	Blythe City Council, 2008, Minutes January 8, 2008. Available at blythe_ARZC_resolution_01-08-08[1].pdf. Accessed Oct. 29, 2010.
28 29 30	BOR (U.S. Bureau of Reclamation), 2008, <i>Law of the River</i> . Available at http://www.usbr.gov/lc/region/pao/lawofrvr.html#avc. Updated March 2008.
31 32 33	Brasher, D., 2009, personal communication from Brasher (Navy Region Southwest, San Diego, Calif.) to L. Resseguie (Bureau of Land Management, Washington, D.C.), Sept.
34 35 36 37 38	Bryant, W.A. (compiler), 2000, <i>Fault Number 118, Pinto Mountain Fault Zone (includes Morongo Valley Fault),</i> in Quaternary Fault and Fold Database of the United States, U.S. Geological Survey. Available at http://earthquakes.usgs.gov/regional/qfaults. Accessed May 11, 2010.
39 40 41 42	Bryant, W.A., and E.W. Hart, 2007, <i>Fault-Rupture Hazard Zones in California—Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault Zones Maps, Interim Revision</i> , California Geological Survey, California Department of Conservation.
43 44 45 46 47	Bryant, W.A., and M.M. Lundberg (compilers), 2002a, <i>Fault Number 1j, San Andreas Fault Zone, Coachella Section</i> , in Quaternary Fault and Fold Database of the United States, U.S. Geological Survey. Available at http://earthquakes.usgs.gov/regional/qfaults. Accessed March 11, 2010.

1	Bryant, W.A., and M.M. Lundberg (compilers), 2002b, Fault Number 1i, San Andreas Fault
2	Zone, San Bernardino Mountains Section, in Quaternary Fault and Fold Database of the
3	United States, U.S. Geological Survey. Available at http://earthquakes.usgs.gov/regional/qfaults.
4	Accessed March 11, 2010.
5	
6	Bryce, S.A., et al., 2003, <i>Ecoregions of Nevada</i> , color poster with map, descriptive text,
7	summary tables, and photographs, U.S. Geological Survey, Reston, Va.
8	
9	Cadiz, Inc., 2008, Cadiz Announces Agreement with Arizona & California Railroad Company
10	for New Water Pipeline. Available at http://www.cadizinc.com/blog/2009/press-release-
11	cadiz-announces-agreement-arizona-california-railroad-company-new-water-pipe. Accessed
12	May 11, 2010.
13	
14	California Department of Finance, 2010, Population Projections by Race and Ethnicity for
15	California and Its Counties, 2000–2050. Available at http://www.dof.ca.gov/research/
16	demographic/reports/projections/p-1/documents/P-1%20Report%20Tables.xls.
17	
18	CalPIF (California Partners in Flight), 2009, The Desert Bird Conservation Plan: A Strategy for
19	Protecting and Managing Desert Habitats and Associated Birds in California. Version 1.0.
20	California Partners in Flight. Available at http://www.prbo.org/calpif/plans.html. Accessed
21	March 3, 2010.
22	
23	Caltrans (California Department of Transportation), 2009, <i>Traffic Counts</i> , Traffic Data Branch.
24	Available at http://traffic-counts.dot.ca.gov. Accessed Feb. 20, 2010. Web page has link to actual
25	data in spreadsheet at http://traffic-counts.dot.ca.gov/2008all/2008AADT.xls.
26	
27	CARB (California Air Resources Board), 2010a. Greenhouse Gas Inventory Data-2000 to
28	2006. Available at http://www.arb.ca.gov/cc/inventorv/data/data.htm. Accessed March 15, 2010.
29	
30	CARB. 2010b. California Ambient Air Quality Standards (CAAOS). Available at
31	http://www.arb.ca.gov/research/aags/caags/caags.htm. Accessed March 15, 2010.
32	
33	CARB. 2010c. Area Designations 2010. Attachment C: Maps and Tables of Area Designations
34	for State and National Ambient Air Quality Standards. Available at http://www.arb.ca.gov/
35	regact/2010/area10/area10 htm Accessed March 16 2010
36	
37	Carrico R L et al 2005 Cultural Resources Inventory of the Proposed Devers to Palo Verde II
38	500 kV Transmission Line Riverside County California prepared by Mooney/Haves Associates
39	LLC
40	
41	CASOA (California Stormwater Quality Association) 2003 Stormwater Rest Management
42	Practice Handbook: Industrial and Commercial California Stormwater Quality Association
43	Menlo Park Calif Available at http://www.cahmphandbooks.com/Industrial.asn Accessed
44	May 4 2010
1-1	$\frac{1}{2}$

45

1 2	CDC (Centers for Disease Control and Prevention), 2009, <i>Divorce Rates by State: 1990, 1995, 1999–2007</i> . Available at http://www.cdc.gov/nchs/data/nvss/Divorce%20Rates%2090
3 1	%2095%20and%2099-07.pdf.
4 5 6	CDFA (California Department of Food and Agriculture), 2010, <i>Encycloweedia: Data Sheets</i> , Available at http://www.cdfa.ca.gov/phpps/ipc/weedinfo/winfo_list-synonyms.htm. Accessed
7	Oct. 23, 2010.
0 9	CDEG (California Department Fish and Game) 2008 Life History Accounts and Range Mans-
10	<i>California Wildlife Habitat Relationships System</i> , California Department of Fish and Game, Sacramento, Calif. Available at http://dfg.ca.gov/biogeodata/cwbr/cawildlife aspx_Accessed
12 13	Feb. 19, 2010.
14 15 16	CDFG (California Department of Fish and Game), 2010a, Lake and Streambed Alteration Program, Available at: http://www.dfg.ca.gov/habcon/1600/, Accessed: Sept. 27.
10 17 18	CDFG, 2010b, <i>California Wildlife Habitat Relationships System (CWHRS)</i> . Available at http://www.dfg.ca.gov/biogeodata/cwhr. Accessed March 4, 2010.
19 20 21	CDFG, 2010c, <i>California Natural Diversity Database (CNDDB)</i> . Available at http://www.dfg.ca.gov/biogeodata/cnddb. Accessed March 4, 2010.
22	
23 24 25	CDWR (California Department of Water Resources), 1991, <i>California Well Standards</i> , Bulletin 74-90. Supplement to CDWR, 1981, <i>Water Well Standards: State of California</i> , Bulletin 74-81.
26	
27 28 20	CDWR, 2003, <i>California's Groundwater Bulletin 118</i> , The California Department of Water Resources. Available at http://www.water.ca.gov/groundwater/bulletin118/update2003.cfm.
29 30 31 32	CDWR, 2005, <i>Colorado River Region Planning Area Reports, PA-1003</i> . Available at http://www.waterplan.water.ca.gov/planningareas/cr/index.cfm.
33 34 35	CDWR, 2009, <i>California Water Plan 2009</i> . Available at http://www.waterplan.water.ca.gov/ cwpu2009/index.cfm.
36 37	CDWR, 2010a, <i>The Water Rights Process</i> . Available at http://www.swrcb.ca.gov/waterrights/ board info/water rights process.shtml#rights. Accessed April 19, 2010.
38	
39	CDWR, 2010b, Awareness Floodplain Maps, Available at
40 41 42	http://www.water.ca.gov/floodmgmt/lrafmo/fmb/fes/awareness_floodplain_maps/, Accessed: Oct. 6.
42 43	CEC (California Energy Commission Siting Transmission and Environmental Protection
44 45	Division), 2009a, <i>Genesis Solar Energy Project</i> , California Energy Commission. Available at http://www.energy.ca.gov/sitingcases/genesis_solar/index.html. Accessed Nov. 16, 2009.
46	

- 1 CEC, 2009b, Rice Solar Energy Project, California Energy Commission, Available at 2 http://www.energy.ca.gov/sitingcases/ricesolar/documents/applicant/afc. Accessed 3 Nov. 16, 2009. 4 5 CEC, 2009c, Best Management Practices and Guidance Manual: Desert Renewable Energy 6 Projects, CEC-700-2009-016-SD-REV, Renewable Energy Action Team (California Energy 7 Commission, California Department of Fish and Game, U.S. Department of Interior Bureau of 8 Land Management and Fish and Wildlife Service), Sacramento, Calif., Dec. 9 10 CEC, 2010a, Energy Facility Status (Updated January 21, 2010), California Energy Commission, Available at http://www.energy.ca.gov/sitingcases/all projects.html#review. 11 12 Accessed Feb. 4, 2010. 13 14 CEC, 2010b, Palen Solar Power Project – Application for Certification (09 AFC-71), Staff 15 Assessment and Draft Environmental Impact Statement, CEC 700-2010-007, March. 16 17 CEC, 2010c, Application for Major Land Use Action Review, Blythe Solar Power Project, 18 submitted to the California Energy Commission, Docket No. 09-AFC-6, February 2010. 19 20 CEQ (Council on Environmental Quality), 1997, Environmental Justice Guidance under the 21 National Environmental Policy Act, Executive Office of the President, Washington, D.C., Dec. 22 Available at http://www.whitehouse.gov/CEQ. 23 24 Chance of Rain, 2009, Interior Appropriations Chair Questions Legality of Cadiz Pipeline Right-25 of-Way. Available at http://chanceofrain.com/2009/08/interior-appropriations-chair-questions-26 legality-of-cadiz-pipeline-right-of-way. Accessed Feb. 8, 2010. 27 28 Chaney-Davis, C., et al., 2010, "Biological Resources," Section C.2 in Blythe Solar Power 29 Project, Staff Assessment and Draft Environmental Impact Statement, Staff Report, U.S. Bureau 30 of Land Management and California Energy Commission, March. 31 32 Chase, M.K., and G.R. Geupel, 2005, "The Use of Avian Focal Species for Conservation 33 Planning in California," pp. 130–142 in Bird Conservation Implementation and Integration 34 in the Americas: Proceedings of the Third International Partners in Flight Conference 35 March 20-24, 2002, Asilomar, Calif., Volume 1, Gen. Tech. Rep. PSW-GTR-191, C.J. Ralph 36 and T.D. Rich (editors), U.S. Department of Agriculture, Forest Service, Pacific Southwest 37 Research Station, Albany, Calif. 38 39 Cleland, J. H., and R.M. Apple, 2003, A View across the Cultural Landscape of the Lower 40 Colorado Desert Cultural Resource Investigations for the North Baja Pipeline Project, prepared 41 for Tetra Tech FW, Inc., Santa Ana, Calif., and North Baja Pipeline, LLC, Portland, Ore., by 42 EDAW, Inc., San Diego, Calif. 43 44 Corwin, E.J., et al., 1991, "Earth Fissures, Urbanization, and Litigation: A Case Study from the 45 Temecula Area, Southwestern Riverside County, California," in Land Subsidence, Proceedings
- 46 for the Fourth International Symposium on Land Subsidence, ISHA Publication No. 200, May.

1 County of Riverside, 2010, Ordinance No. 847: Regulating Noise in Riverside County. Available 2 at http://www.clerkoftheboard.co.riverside.ca.us/ords.htm. Accessed May 4, 2010. 3 4 Cowherd, C., et al., 1988, Control of Open Fugitive Dust Sources, EPA 450/3-88-008, 5 U.S. Environmental Protection Agency, Research Triangle Park, N.C. 6 7 CPUC (California Public Utilities Commission), 2009, Decision Modifying Decision 07-01-040 8 Granting a Certificate of Public Convenience and Necessity Concerning the Devers-Palo Verde 9 No. 2 Transmission Line Project, Nov. 20, 2009. 10 CSC (Coastal Services Center), 2010, Historical Hurricane Tracks, National Oceanic and 11 12 Atmospheric Administration (NOAA). Available at http://csc-s-maps-q.csc.noaa.gov/hurricanes. 13 Accessed March 13, 2010. 14 15 CSRI (Cultural Systems Research, Incorporated), 1987, California Low-level Radioactive Waste 16 Disposal Project: Cultural Resources Surveying Ethnographic Resources Candidate Site Selection, prepared for US Ecology, Inc., Newport Beach, Calif., by Cultural Systems Research. 17 18 Inc., Menlo Park, Calif. 19 20 CSRI, 2002, The Native Americans of Joshua Tree National Park: An Ethnograhic Overview 21 and Assessment Study, prepared for the National Park Service by Cultural Systems Research, 22 Inc., Menlo Park, Calif. 23 24 Davis, F.W., et al., 1998, The California Gap Analysis Project-Final Report, University of 25 California, Santa Barbara, Calif. Available at [http://www.biogeog.ucsb.edu/projects/gap/gap_rep.html. Accessed July 13, 2010. 26 27 28 Desert Tortoise Council, 1994 (revised 1999), Guidelines for Handling Desert Tortoises During 29 Construction Projects, Edward L. LaRue, Jr. (editor), Wrightwood, Calif. 30 31 Diefenbach, A.K., Guffanti, M., and J.W. Ewert, 2009, Chronology and References of Volcanic 32 Eruptions and Selected Unrest in the United States, 1980-2008, U.S. Geological Survey Open 33 File Report 2009-1118. 34 35 DOE (U.S. Department of Energy), 2009, Report to Congress, Concentrating Solar Power 36 *Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power* 37 Electricity Generation, Jan. 13. 38 39 DOE and DOI (U.S. Department of the Interior), 2008, Programmatic Environmental Impact 40 Statement, Designation of Energy Corridors on Federal Land in the 11 Western States 41 (DOE/EIS-0386), Nov. Available at http://corridoreis.anl.gov/documents/index.cfm. 42 43 Dohrenwend, J.S., et al., 1984, "K-Ar Dating of the Cima Volcanic Field, Eastern Mojave 44 Desert, California - Late Cenozoic Volcanic History and Landscape Evolution," Geology 12 45 (3):163–167. 46

1 Eagle Crest Energy, 2008a, Draft license Application for Eagle Mountain Pumped Storage 2 Project, Exhibit C submitted to Federal Energy Regulatory Commission, June 16, 2008. 3 Available at http://www.eaglecrestenergy.com/index2.html. Accessed Feb. 17, 2010. 4 5 Eagle Crest Energy, 2008b, Eagle Crest Energy Request for Jurisdictional Determination for 6 Application for Water Quality Certification. Letter from J. Harvey, Eagle Crest Energy to 7 C. Williams California Surface Water Resources Control Board, Sept. 26, 2008. 8 9 Eagle Crest Energy, 2009, Eagle Mountain Pumped Storage Project Web site. Available at 10 http://www.eaglecrestenergy.com/index2.html, Accessed Feb. 17, 2010. 11 12 Eckhardt, W.T., and K.E. Walker, 2004, Cultural Resources Inventory of the Proposed Devers to 13 Palo Verde #2 500kV Transmission Line, Riverside County, California, Vol. II-Confidential, 14 prepared for Southern California Edison Company, Rosemead, Calif. by Mooney/Hayes 15 Associates, LLC, San Diego, Calif. 16 17 Eckhardt, W.T., and S. Wilson, 2009, Final Cultural Resources Inventory of the Proposed DPV2 18 Colorado River Switchyard project, Riverside County, California, Vol. III—Confidential, 19 prepared for Southern California Edison Company, Rosemead, Calif., by Mooney ICF Jones & 20 Stokes, San Diego, Calif. 21 22 EIA (Energy Information Administration), 2009, Annual Energy Outlook 2009 with Projections 23 to 2030, DOE/EIA-0383, March. 24 25 Eldred, K.M., 1982, "Standards and Criteria for Noise Control-An Overview," Noise Control 26 *Engineering* 18(1): 16–23. 27 28 Electric Energy Online, 2009, The County of Riverside California Awards Contract to Tessera 29 Solar and Optiflex Properties & Development for Solar Energy Projects on County Land. 30 Available at http://www.electricenergyonline.com/?page=show news&id=115278. Accessed 31 Dec. 11, 2009. 32 33 EPA (U.S. Environmental Protection Agency), 1974, Information on Levels of Environmental 34 Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety, 35 EPA-550/9-74-004, Washington, D.C., March. Available at http://www.nonoise.org/library/ 36 levels74/levels74.htm. Accessed Nov. 17, 2008. 37 38 EPA, 2002, Primary Distinguishing Characteristics of Level III Ecoregions of the Continental 39 United States, Draft. Available at http://www.epa.gov/wed/ecoregions/us/useco_desc.doc. 40 Accessed Oct. 2, 2008. 41 42 EPA, 2007, Level III Ecoregions, Western Ecology Division, Corvallis, Ore. Available at 43 http://www.epa.gov/wed/pages/ecoregions/level iii.htm. Accessed Oct. 2, 2008. 44 45 EPA, 2009a, Energy CO₂ Emissions by State. Available at http://www.epa.gov/climatechange/ 46 emissions/state energyco2inv.html. Updated June 12, 2009. Accessed June 23, 2008.

1 EPA, 2009b, Preferred/Recommended Models-AERMOD Modeling System. Available at 2 http://www.epa.gov/scram001/dispersion prefrec.htm. Accessed Nov. 8, 2009. 3 4 EPA, 2009c, eGRID. Available at http://www.epa.gov/cleanenergy/energy-resources/egrid/ 5 index.html. Updated Oct. 16, 2008. Accessed Jan. 12, 2009. 6 7 EPA, 2010a, National Ambient Air Quality Standards (NAAQS). Available at http://www.epa. 8 gov/air/criteria.html, last updated June 3, 2010. Accessed June 4, 2010. 9 10 EPA, 2010b, AirData: Access to Air Pollution Data. Available at http://www.epa.gov/oar/data/. Accessed March 14, 2010. 11 12 13 FAA (U.S. Federal Aviation Administration), 2009, Airport Data (5010) & Contact Information, 14 Information Current as of 07/02/2009. Available at http://www.faa.gov/airports/airport safety/ 15 airportdata 5010. Accessed Aug. 13, 2009. 16 17 Farmer, R., et al., 2009, Revised Draft, Class II and Class III Cultural Resources Inventories for 18 the Proposed Genesis Solar Energy Project, Riverside County, California, prepared by Tetra 19 Tech, Rancho Cordova, Calif., for Bureau of Land Management, Palm Springs-South Coast 20 Field Office, Calif. 21 22 FEMA (Federal Emergency Management Agency), 2009, FEMA Map Service Center. Available 23 at http://www.fema.gov. Accessed Nov. 20, 2009. 24 25 Field, K.J., et al., 2007, "Return to the Wild: Translocation as a Tool in Conservation of the Desert Tortoise (Gopherus agassizii)," Biological Conservation 136:232-245. 26 27 28 Fire Departments Network, 2009, *Fire Departments by State*. Available at http://www. 29 firedepartments.net. 30 31 Fowler, C.S., 1986, "Subsistence," pp. 64-97 in Handbook of North American Indians, Vol. 11, 32 Great Basin, W.L. D'Azevedo (editor), Smithsonian Institution, Washington, D.C. 33 34 Galloway, D. et al., 1999, Land Subsidence in the United States, U.S. Geological Survey, 35 Circular 1182. 36 37 Garcia-Tuck, P., 2010, "Genesis Solar, Blythe Solar, and Palen Solar Projects Programmatic 38 Agreement, Riverside County, CA," personal communication from Garcia-Tuck (Tribal Historic 39 Preservation Office, Agua Caliente Band of Cahuilla Indians, Palm Springs, Calif.) to J. Kalish (Palm 40 Springs-South Coast Field Office, Bureau of Land Management, Palm Springs, Calif.), Oct. 10. 41 42 GCRP (U.S. Global Change Research Program), 2009, Global Climate Change Impacts in the 43 United States, T.R. Karl, J.M. Melillo, and T.C. Peterson, (editors), U.S. Global Change 44 Research Program, Cambridge University Press, New York, N.Y. Available at 45 www.globalchange.gov/usimpacts. Accessed Jan. 25, 2010.

1 Giffen, R., 2009, "Rangeland Management Web Mail," personal communication from R. Giffen 2 (USDA Forest Service, Rangelands Management, Washington, D.C.) to W. Vinikour (Argonne 3 National Laboratory, Argonne, Ill.), Sept. 22, 2009. 4 5 Graham, T.B., 2001, Survey of Ephemeral Pool Invertebrates at Wupatki NM: An Evaluation of 6 the Significance of Constructed Impoundments as Habitat, WUPA 310, final report for Wupatki 7 National Monument and Southwest Parks and Monuments Association, Sept 8 9 Gutierrez, C. et al., 2010a, 2010 State Geologic Map of California (Scale 1:750,000), California 10 Geological Survey Geologic Data Map 2. Available at: http://www.consrv.ca.gov/cgs history/Pages/2010 geologicmap.aspx. Accessed October 4, 11 12 2010. 13 14 Halmo, D.B., 2003, Blythe Energy Projects American Indian Ethnographic Assessment Study, 15 prepared for Greystone Environmental Consultants, Inc., Sacramento, Calif., Lake Havasu, Ariz. 16 17 Hanson, C.E., et al., 2006, Transit Noise and Vibration Impact Assessment, FTA-VA-90-1003-18 06, prepared by Harris Miller Miller & Hanson Inc., Burlington, Mass., for U.S. Department of 19 Transportation, Federal Transit Administration, Washington, D.C., May. Available at 20 http://www.fta.dot.gov/documents/FTA Noise and Vibration Manual.pdf. 21 22 Harter, T., 2003, Water Well Design and Construction, University of California Division of 23 Agriculture and Natural Resources, Publication 8086, FWQP Reference Sheet 11.3. 24 25 Harwell, H.O., and M.C.S. Kelly, 1983, "Maricopa" pp. 71-85 in Handbook of North American 26 Indians, Vol. 10 Southwest, A. Ortiz (editor), Smithsonian Institution, Washington, D.C. 27 28 Hill, D.P., et al., 1998, Future Eruptions in California's Long Valley Area—What's Likely? 29 U.S. Geological Survey Fact Sheet 073-97, Nov. 30 31 Hill, D.P., et al., 2000, Living with a Restless Caldera—Long Valley California, U.S. Geological 32 Survey Fact Sheet 108-96, Version 2.1, May. 33 34 Indian Claims Commission, 1958, "Opinions of Commissioners: Separate Opinion of Chief Commissioner Witt, Jan 28," Decisions of the Indian Claims Commission, Vol. 6, Oklahoma 35 36 State University. Available at http://digital.library.okstate.edu/icc/index.html. 37 38 Jackson, M., Sr., 2009, "Quechan Indian Tribe's Comments on Programmatic Environmental 39 Impact Statement for Solar Energy Development," letter from Jackson (President, Quechan 40 Indian Tribe, Fort Yuma, Ariz.) to Argonne National Laboratory (Argonne, Ill.), Sept. 3. 41 42 Johnson, B., 2003, "Geoglyphs Associated with the Xam Kwatcan Trail in the Palo Verde Point 43 Area, South of Blythe, California," Chapter 11, A View Across the Cultural Landscape of the Lower Colorado Desert Cultural Resource Investigations for the North Baja Pipeline Project, 44 45 J.H. Cleland and R.M. Apple, prepared for Tetra Tech FW, Inc., Santa Ana, Calif., and North Baja Pipeline LLC, Portland, Ore., by EDAW, Inc., San Diego, Calif. 46 47

1 2	Jones, T.L., and K.A. Klar (editors), 2007, <i>California Prehistory: Colonization, Culture, and Complexity</i> , AltaMira Press, Lanham, Md.
3 4 5	Kaiser Ventures, LLC, 2010, <i>Eagle Mountain Landfill Project</i> . Available at http://www.kaiserventures.com/waste.htm_Accessed May 4_2010
6	http://www.kubolvontulos.com/waste.html./recessed http//, 2010.
7 8	Kelly, I.T., and C.S. Fowler, 1986, "Southern Paiute," pp. 368–397 in <i>Handbook of North American Indians, Vol. 11, Great Basin, Smithsonian Institution, Washington, D.C.</i>
9	
10 11	Kenny, J.F, et al., 2009, <i>Estimated Use of Water in the United States in 2005</i> , U.S. Geological Survey, Circular 1344. Available at http://pubs.usgs.gov/circ/1344. Accessed Jan. 4, 2010.
12	
13 14 15	Desert Planning Units, Eric W. Ritter (editor), U.S. Bureau of Land Management, California Desert District Riverside, Calif
16	
17 18	Kovach, R.L., 1973, <i>Source Mechanisms for Wilmington Oil Field, California, Subsidence Earthquakes</i> , Bulletin of the Seismological Society of America, Vol. 64, No. 3-1.
19	
20 21	Kroeber, A., 1925, <i>Handbook of the Indians of California</i> , Bulletin 78 of the Bureau of American Ethnology, Smithsonian Institution, Washington, D.C.
22 23 24 25	Lee, J.M., et al., 1996, <i>Electrical and Biological Effects of Transmission Lines: A Review</i> , Bonneville Power Administration, Portland, Ore., Dec.
23 26 27 28	Lightfoot, K.G., and O. Parish, 2009, <i>California Indians and Their Environment: An Introduction, California Natural History Guides No. 96</i> , University of California Press, Berkeley, Calif.
29 30 31 32 33 34	Love, B., and M. Dahdul, 2002, "Desert Chronologies and the Archaic Period in the Coachella Valley," <i>Pacific Coast Archaeological Society Quarterly</i> 38 (2 & 3):65–86. Lovich, J., and D. Bainbridge, 1999, "Anthropogenic Degradation of the Southern California 15 Desert Ecosystem and Prospects for Natural Recovery and Restoration," <i>Environmental</i> 16 <i>Management</i> 24(3):309–326.
36 37 38 39 40	Ludington, S. et al., 2007, <i>Preliminary Integrated Geologic Map Databases for the United States</i> – <i>Western States: California, Nevada, Arizona, Washington, Oregon, Idaho, and Utah</i> , U.S. Geological Survey Open File Report 2005-1305, Version 1.3, original file updated in December 2007. Available at: http://pubs.usgs.gov/of/2005/1305/index.htm.
41 42 43	Manci, K.M., et al., 1988, <i>Effects of Aircraft Noise and Sonic Booms on Domestic Animals and Wildlife: A Literature Synthesis</i> , NERC-88/29, U.S. Fish and Wildlife Service National Ecology Research Center, Ft. Collins, Colorado. 88 pp.
44 45 46 47	Matti, J.C., and S.E. Carson, 1991, <i>Liquefaction Susceptibility in the San Bernardino Valley and Vicinity, Southern California—A Regional Evaluation</i> , U.S. Geological Survey Bulletin 1898.

1 Matti, J.C., et al., 1992, The San Andreas Fault System in the Vicinity of the Central Transverse 2 Ranges Province, Southern California, U.S. Geological Survey Open-File Report 92-354. 3 4 Metzger, D.G., et al., 1973, Geohydrology of the Parker-Blythe-Cibola area, Arizona and 5 California, U.S. Geological Survey, Professional Paper, 486-G. 6 7 MIG (Minnesota IMPLAN Group), Inc., 2009, State Data Files, Stillwater, Minn. 8 9 Miller, C.D., 1989, Potential Hazards from Future Volcanic Eruptions in California, 10 U.S. Geological Survey Bulletin 1847. 11 12 Miller, N.P., 2002, "Transportation Noise and Recreational Lands," in Proceedings of Inter-13 Noise 2002, Dearborn, Mich., Aug. 19–21. Available at http://www.hmmh.com/cmsdocuments/ 14 N011.pdf. Accessed Aug. 30, 2007. 15 16 Mueller, G.A., and P.C. Marsh, 2002, Lost, a desert river and its native fishes: a historical perspective of the lower Colorado River, U.S. Geological Survey, Fort Collins Science Center 17 18 Information and Technology Report 2002-0010. 19 20 MWD (Metropolitan Water District), 2007, Palo Verde Land Management, Crop Rotation 21 and Water Supply Program. Available at http://www.mwdh2o.com/mwdh2o/pages/news/ 22 at a glance/palo verde.pdf. 23 24 National Research Council, 1996, Alluvial Fan Flooding, Committee on Alluvial Fan Flooding, 25 Water Science and Technology Boar, and Commission on Geosciences, Environment, and Resources, National Academy Press, Washington D.C. 26 27 28 NatureServe, 2008, International Ecological Classification Standard: Terrestrial Ecological 29 Classifications, NatureServe Central Databases, Arlington, Va., data current as of July 17, 2009. 30 31 NatureServe, 2010, NatureServe Explorer: An Online Encyclopedia of Life (Web Application), 32 Version 7.1, Arlington, Va. Available at http://www.natureserve.org/explorer. Accessed Oct. 1, 33 2010. 34 35 NCDC (National Climatic Data Center), 2010a, Integrated Surface Data (ISD), DS3505 Format, database, Asheville, N.C. Available at ftp://ftp3.ncdc.noaa.gov/pub/data/noaa. Accessed 36 37 Feb. 19, 2010. 38 39 NCDC, 2010b, Climates of the States (CLIM60): Climate of California, National Oceanic and 40 Atmospheric Administration, Satellite and Information Service. Available at http://cdo.ncdc. 41 noaa.gov/cgi-bin/climatenormals/climatenormals.pl. Accessed March 18, 2010. 42 43 NCDC, 2010c, Storm Events, National Oceanic and Atmospheric Administration, Satellite and 44 Information Service. Available at http://www4.ncdc.noaa.gov/cgi-45 win/wwcgi.dll?wwEvent~Storms. Accessed Oct. 16, 2010. 46

1 2	NCES (National Center for Education Statistics), 2009, <i>Search for Public School Districts</i> , U.S. Department of Education. Available at http://www.nces.ed.gov/ccd/districtsearch.
3	
4	NRCS, 2006, Official Soil Series Descriptions. Available at http://www2.ftw.nrcs.usda.gov.
5 6	Accessed March 15, 2010.
7	NRCS 2008 Custom Soil Resource Report for Imperial County (covering the proposed Imperial
8 9	<i>East SEZ), California</i> , U.S. Department of Agriculture, Washington, D.C., Oct. 7.
10	Nussear, K.E., et al., 2009, Modeling Habitat for the Desert Tortoise (Gopherus agassizii)
11	in the Mojave and Parts of the Sonoran Deserts of California. Nevada. Utah. and Arizona.
12	U.S. Geological Survey Open-File Report 2009-1102.
13	
14	Ontiveros, J., 2010, "Solar Energy Study Areas being Used Analyzed as Part of the
15	Programmatic Environmental Impact Statement for Solar Energy Development" personal
16	communication from Ontiveros (Soboba Cultural Resources Department, San Jacinto, Calif.)
17	to L.J. Ressigue (Bureau of Land Management, Washington, D.C.), March 8.
18	
19	Parker, R.B., 1963, Recent Volcanism at Amboy Crater, San Bernardino County, California,
20	Special Report 76, California Division of Mines and Geology, San Francisco, Calif.
21	
22	Planert, M., and J. S. Williams, 1995, Ground Water Atlas of the United States: California,
23	Nevada, U.S. Geological Survey, HA 730-B. Available at http://pubs.usgs.gov/ha/ha730/ch b/
24	index.html.
25	
26	RailAmerica, 2010, Arizona and California Railroad. Available at http://www.railamerica.com/
27	RailServices/ARZC.aspx. Accessed Feb. 26, 2010.
28	
29	Ridder, C., 1998, Sacred or Profane? Standoff in Ward Valley Escalates as Protesters Are Asked
30	to Relocate. Available at http://cridder.com/morgue/freelance/ward.html.
31	
32	Rogers, M., 1939, Early Lithic Industries of the Lower Basin of the Colorado River and Adjacent
33	Desert Areas, San Diego Museum Papers No. 3.
34	
35	Rotstein, Y., et al., 1976, Gravity Investigation in the Southeastern Mojave Desert, California,
36	Geological Society of America Bulletin, Vol. 87, No. 7.
37	
38	Royster, J., 2008, "Indian Land Claims," pp. 28–37 in Handbook of North American Indians,
39	Vol. 2 Indians in Contemporary Society, G.A. Bailey (editor), Smithsonian Institution,
40	Washington, D.C.
41	
42	Russo, K., 2009, "Re: Solar Energy Study Area," letter from Russo (Native American Land
43	Conservancy, Indio, Calif.) to Solar Energy PEIS (Argonne National Laboratory, Argonne, Ill.),
44	Sept. 11.
45	

1 SAMHSA (Substance Abuse and Mental Health Services Administration), 2009, National 2 Survey on Drug Use and Health, 2004, 2005 and 2006, Office of Applied Studies, 3 U.S. Department of Health and Human Services. Available at http://oas.samhsa.gov/substate2k8/ 4 StateFiles/TOC.htm#TopOfPage. 5 6 Sanborn Mapping, 2008, GAP Ecological Systems, USGS Mapping Zones 12 and 13, Portland, 7 Ore., for the USGS GAP Program, Dec. Available at http://gapanalysis.nbii.gov/portal/ 8 community/GAP Analysis Program/Communities/Maps, Data, & Reports/Find Updated 9 GAP Regional Data. 10 SES (Stirling Energy Systems) Solar Two, LLC, 2008, Application for Certification, submitted 11 12 to the Bureau of Land Management, El Centro, Calif., and the California Energy Commission, 13 Sacramento, Calif., June. Available at http://www.energy.ca.gov/sitingcases/solartwo/ 14 documents/applicant/afc/index.php. Accessed Oct. 1, 2008. 15 16 Shlemon, R.J., 1995, "Groundwater Rise and Hydrocollapse: Technical and Political Implications of 'Special Geologic Zones' in Riverside County, California USA," in Land 17 18 Subsidence, Proceedings for she Fifth International Symposium of Land Subsidence, IAHS 19 Publication No. 234, Oct. 20 21 Singleton, D., 2010, Request for a Sacred Lands File Search and Native American Contacts List 22 for the "Four Solar Study Areas (SESA)" located in San Bernardino, Riverside and Imperial 23 Counties, personal communication from Singleton (Native American Heritage Commission, 24 Sacramento, Calif.) to B.T. Verhaaren (Argonne National Laboratory, Argonne, Ill.), April 30. 25 26 Smith, M., et al., 2001, "Growth, Decline, Stability and Disruption: A Longitudinal Analysis of Social Well-Being in Four Western Communities," Rural Sociology 66:425-450. 27 28 29 Smithsonian, 2010, Global Volcanism Program—Lavic Lake Summary, Smithsonian 30 National Museum of Natural History. Available at http://www.volcano.si.edu/world/ 31 volcano.cfm?vnum=1203-19-. Accessed April 14, 2010. 32 33 State of Arizona vs. State of California, 2006, 547 U.S. 150. 34 35 Steinemann, A. C., 1989, Evaluation of Nonpotable Ground Water in the Desert Area of 36 Southeastern California for Power Plant Cooling, U.S. Geological Survey, Water Supply 37 Paper, 2343. 38 39 Stewart, K.M., 1983, "Mohave," pp. 55-70 in Handbook of North American Indians, Vol. 10, 40 Southwest, A. Ortiz (editor), Smithsonian Institution, Washington, D.C. 41 42 Stoffle, R.W., et al., 1990, Native American Cultural Resource Studies at Yucca Mountain, 43 Nevada, University of Michigan, Ann Arbor, Mich. 44

1 2	Stout, D., personal communication from Stout (U.S. Fish and Wildlife Service, Acting Assistant Director for Fisheries and Habitat Conservation, Washington, D.C.) to L. Jorgensen and
$\frac{2}{3}$	L Resseguie (Bureau of Land Management Washington D.C.) Sept 14 2009
4	2. Ressegure (Bureau of Buna Humagement, Hushington, B.e.), Sept. 14, 2009.
5	Strong, W.D., 1929, Aboriginal Society in Southern California, University of California
6	Publications in American Archaeology and Ethnology, Vol. 26, University of California,
7	Berkeley, Calif. Reprinted 1972, Malki Museum Press, Banning, Calif.
8	
9	Tetra Tech, 2009, "Genesis Solar Energy Project: Application for Certification, Volume I,"
10	prepared for the California Energy Commission, submitted by Genesis Solar, LLC.
11	
12	Tremaine, K., and G. E. Kline, 2010, "Cultural Resources," Section C.3 in Palen Solar Power
13	Project, Staff Assessment and Draft Environmental Impact Statement, Staff Report, U.S. Bureau
14	of Land Management and California Energy Commission, March.
15	
16	Turner, R.M., 1994, "Mohave Desertscrub," in Biotic Communities: Southwestern United States
17	and Northwestern Mexico, D.E. Brown (editor), University of Utah Press, Salt Lake City, Utah.
18	
19	Turner, R.M., and D.E. Brown, 1994, "Sonoran Desertscrub," in <i>Biotic Communities:</i>
20	Southwestern United States and Northwestern Mexico, D.E. Brown (editor), University of Utah
21	Press, Salt Lake City, Utah.
22	
23	UPR (Union Pacific Railroad), 2009, Allowable Gross Weight Map. Available at
24	http://www.uprr.com/aboutup/maps/attachments/allow_gross_full.pdf. Accessed March 4, 2010.
25	
26	U.S. Bureau of the Census, 2009a. County Business Patterns, 2006, Washington, D.C. Available
27	at http://www.census.gov/ftp/pub/epcd/cbp/view/cbpview.html
28	
29	U.S. Bureau of the Census, 2009b. GC1-11. Population Estimates. Available at
30 21	http://factfinder.census.gov/.
31 22	U.S. Durany of the Congue 2000s OT D22 Income Distribution in 1000 of Households and
32 22	U.S. Buleau of the Census, 2009C, Q1-F52. Income Distribution in 1999 of Households and Equilibrium 2000. Consus 2000 Symmetry Eile (SE 2) Sample Data Available at
23 24	<i>Families:</i> 2000. Census 2000 Summary File (SF 5) – Sample Dala. Available at
24 25	http://factifider.census.gov/.
33 26	U.S. Buragu of the Congue 2000d S1001 Income in the Past 12 Months 2006 2008 American
30	Community Survey 3 Vegr Estimates Available at http://factfinder.census.gov/
38	Community Survey 5-Tear Estimates. Available at http://lactinider.census.gov/.
30	U.S. Bureau of the Census 2000e GCT_PH1 GCT_PH1 Population Housing Units Area
40	and Density: 2000 Census 2000 Summary File (SF 1) $= 100$ -Percent Data Available at
41	http://factfinder.census.gov/
42	
43	U.S. Bureau of the Census 2009f T1 Population Estimates Available at
44	http://factfinder.census.gov/.
45	1

1 U.S. Bureau of the Census, 2009g, GCT2510. Median Housing Value of Owner-Occupied 2 Housing Units (Dollars), 2006–2008 American Community Survey 3-Year Estimates. Available 3 at http://factfinder.census.gov/. 4 5 U.S. Bureau of the Census, 2009h, QT-H1. General Housing Characteristics, 2000. Census 6 2000 Summary File 1 (SF 1) 100-Percent Data. Available at http://factfinder.census.gov/. 7 8 U.S. Bureau of the Census, 2009i, GCT-T9-R, Housing Units, 2008, Population Estimates. 9 Available at http://factfinder.census.gov/. 10 U.S. Bureau of the Census, 2009j, S2504, Physical Housing Characteristics for Occupied 11 12 Housing Units, 2006–2008 American Community Survey 3-Year Estimates. Available at 13 http://factfinder.census.gov/. 14 15 U.S. Bureau of the Census, 2009k. Available at http://factfinder.census.gov/. Census 2000 16 Summary File 1 (SF 1) 100-Percent Data. 17 18 U.S. Bureau of the Census, 2009l, Census 2000 Summary File 3 (SF 3) – Sample Data. 19 Available at http://factfinder.census.gov/. 20 21 USDA (U.S. Department of Agriculture), 2009, 2007 Census of Agriculture: California State 22 and County Data, Volume 1, Geographic Area Series, National Agricultural Statistics Service, 23 Washington, D.C. Available at http://www.agcensus.usda.gov/Publications/2007/ 24 Full Report/Volume 1, Chapter 2 County Level/California/index.asp. 25 26 U.S. Department of Commerce, 2009, Local Area Personal Income, Bureau of Economic 27 Analysis. Available at http://www.bea.doc.gov/bea/regional/reis. 28 29 U.S. Department of Justice, 2008, "Table 80: Full-time Law Enforcement Employees, by State 30 by Metropolitan and Nonmetropolitan Counties, 2007," 2007 Crime in the United States, Federal 31 Bureau of Investigation, Criminal Justice Information Services Division, Sept. Available at 32 http://www.fbi.gov/ucr/cius2007/data/table 80.html. Accessed June 17, 2010. 33 34 U.S. Department of the Interior, 2010, Native American Consultation Database, National 35 NAGPRA Online Database, National Park Service. Available at http://grants.cr.nps.gov/ 36 nacd/index.cfm. 37 38 U.S. Department of Justice, 2009a, "Table 8: Offences Known to Law Enforcement, by State 39 and City," 2008 Crime in the United States, Federal Bureau of Investigation, Criminal Justice 40 Information Services Division. Available at http://www.fbi.gov/ucr/cius2008/data/table 08.html. 41 42 U.S. Department of Justice, 2009b, "Table 10: Offences Known to Law Enforcement, by 43 State and by Metropolitan and Non-metropolitan Counties," 2008 Crime in the United States, Federal Bureau of Investigation, Criminal Justice Information Services Division. Available at 44 45 http://www.fbi.gov/ucr/cius2008/data/table 08.html. 46

1 U.S. Department of Labor, 2009a, Local Area Unemployment Statistics: States and Selected 2 Areas: Employment Status of the Civilian Noninstitutional Population, 1976 to 2007, Annual 3 Averages, Bureau of Labor Statistics. Available at http://www.bls.gov/lau/staadata.txt. 4 5 U.S. Department of Labor, 2009b, Local Area Unemployment Statistics: Unemployment Rates by 6 State, Bureau of Labor Statistics. Available at http://www.bls.gov/web/laumstrk.htm. 7 8 U.S. Department of Labor, 2009c, Local Area Unemployment Statistics: County Data, Bureau of 9 Labor Statistics. Available at http://www.bls.gov/lau. 10 11 USFS, 1997, "Ecological Subregions of California: Section and Subsection Descriptions," In 12 Biological Assessment for the Preferred Alternative, Publication R5-EM-TP-005, S. R. Miles 13 and C. B. Goudy (compilers), Pacific Southwest Region, San Francisco, Calif. Available at 14 http://www.r5.fs.fed.us/ecoregions. Accessed April 11, 2010. 15 16 USFS (U.S. Forest Service), 1998, Ecological Subregions of California, Section and Subsection 17 Descriptions. Available at http://www.fs.fed.us/r5/projects/ecoregions/322bc.htm. 18 19 USFS, 2007, Wild Horse and Burro Territories, U.S. Forest Service, Rangelands, Washington, 20 D.C. Available at http://www.fs.fed.us/rangelands/ecology/wildhorseburro//territories/ 21 index.shtml. Accessed Oct. 20, 2009. 22 23 USFWS (U.S. Fish and Wildlife Service), 1994, Desert Tortoise (Mojave Population) Recovery Plan, U.S. Fish and Wildlife Service, Portland, Ore. 24 25 26 USFWS, 2009, National Wetlands Inventory, U.S. Department of the Interior, Fish and Wildlife 27 Service, Washington, D.C. Available at http://www.fws.gov/wetlands. 28 29 USGS (U.S. Geological Survey), 1988, Probabilities of Large Earthquakes Occurring in 30 California on the San Andreas Fault, prepared by the Working Group on California Earthquake 31 Probabilities, U.S. Geological Survey Open-File Report 88-398. 32 33 USGS, 2004, National Gap Analysis Program, Provisional Digital Land Cover Map for the 34 Southwestern United States, Version 1.0, RS/GIS Laboratory, College of Natural Resources, 35 Utah State University. Available at http://earth.gis.usu.edu/swgap/landcover.html. Accessed 36 March 15, 2010. 37 38 USGS, 2005, National Gap Analysis Program, Southwest Regional GAP Analysis Project— 39 Land Cover Descriptions, RS/GIS Laboratory, College of Natural Resources, Utah State University. Available at http://earth.gis.usu.edu/swgap/legend desc.html. Accessed 40 March 15, 2010. 41 42 43 USGS, 2007, National Gap Analysis Program, Digital Animal-Habitat Models for the 44 Southwestern United States, Version 1.0, Center for Applied Spatial Ecology, New Mexico 45 Cooperative Fish and Wildlife Research Unit, New Mexico State University. Available at 46 http://fws-nmcfwru.nmsu.edu/swregap/HabitatModels/default.htm. Accessed March 15, 2010. 47

1 USGS, 2008a, *Quagga and Zebra Mussel Sightings Distribution in the Western United States*. 2 Map produced by the U.S. Geological Survey, Nov. 20, 2008. Available at 3 http://Nas.Er.Usgs.Gov/Taxgroup/Mollusks/Zebramussel/Maps/Southwest Quagga.Pdf. 4 5 USGS, 2008b, National Seismic Hazard Maps – Peak Horizontal Acceleration (%g) with 10% 6 Probability of Exceedance in 50 Years (Interactive Map). Available at: 7 http://gldims.cr.usgs.gov/nshmp2008/viewer.htm. Accessed August 4, 2010. 8 9 USGS, 2010a, Water Resources of the United States—Hydrologic Unit Maps. Available at 10 http://water.usgs.gov/GIS/huc.html. Accessed April 12, 2010. 11 12 USGS, 2010b, Lower Colorado River Interactive Mapping, Available at: http://az.water. 13 usgs.gov/projects/LCRS, Accessed April 16. 14 15 USGS, 2010c, National Water Information System. Available at http://wdr.water.usgs.gov/ 16 nwisgmap. Accessed March 12. 17 18 USGS, 2010d, California Regional Gap Analysis Project (CAReGAP), National Biological 19 Informatics Infrastructure (NBII). Available at http://gapanalysis.nbii.gov/portal/community/ 20 GAP Analysis Program/Communities/Maps, Data, & Reports/Find Updated GAP Regional 21 Data. Accessed March 4, 2010. 22 23 USGS, 2010e, National Earthquake Information Center (NEIC) – Circular Area Database 24 Search (within 100-km of the center of the proposed Fourmile East SEZ). Available at: 25 http://earthquake.usgs.gov/earthquakes/eqarchives/epic/epic circ.php. Accessed August 5, 2010. 26 27 USGS, 2010f, Glossary of Terms on Earthquake Maps – Magnitude. Available at: 28 http://earthquake.usgs.gov/earthquakes/glossary.php#magnitude. Accessed August 8, 2010. 29 30 USGS and CGS (California Geological Survey), 2009, *Quaternary Fault and Fold Database for* 31 the United States. Available at: http://earthquake.usgs.gov/regional/qfaults/. Accessed: 32 September 11, 2009. 33 34 Wiele, S.M., et al., 2008, Update of the Accounting Surface along the Lower Colorado River U.S. Geological Survey, Scientific Investigations Report, 2008–5113. 35 36 37 Wilson, R.P., and Owen-Joyce, S. J., 1994, Method to identify wells that yield water that will be 38 replaced by Colorado River water in Arizona, California, Nevada, and Utah, U.S. Geological 39 Survey, Water Resources Investigations Report, 94-4005. 40 41 Worley-Parsons, 2010, Preliminary Report of Ancient Shorelines in Ford Dry Lake for Genesis Solar Energy Project, Chuckwalla Valley, Riverside County, California, letter from M. Kenney, 42 Supervising Geologist, Worley-Parsons, to M. Pappalardo, Environmental Manager, Genesis 43 44 Solar LLC, January 19. California Energy Commission Docket No. 09-AFC-8.

- 1 WRAP (Western Regional Air Partnership), 2009, Emissions Data Management System
- 2 (EDMS). Available at http://www.wrapedms.org/default.aspx. Accessed June 4, 2009.
 3
- WRCC (Western Regional Climate Center), 2010a, *Average Pan Evaporation Data by State*.
 Available at http://www.wrcc.dri.edu/htmlfiles/westevap.final.html. Accessed Jan. 19.
- 6
- 7 WRCC, 2010b, Western U.S. Climate Historical Summaries. Available at http://www.wrcc.dri.
- 8 edu/Climsum.html. Accessed Jan. 31, 2010.
- 9

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	This page intentionally left blank.
14	1.6 2.5